1: Foundations of Biology
Dehydration Synthesis
Build a glucose molecule, atom-by-atom, to learn about chemical bonds and the structure of glucose. Explore the processes of dehydration synthesis and hydrolysis in carbohydrate molecules.5 Minute Preview
Measuring Motion
Go on an African safari and observe a variety of animals walking and running across the savanna. Videotape the animals, and then play back the videotape to estimate animal speeds. Which animals run fastest?5 Minute Preview
Measuring Trees
Measure the height, diameter, and circumference of trees in a forest. Count growth rings to determine the age of each tree. Grow the trees for several years and investigate how growth is affected by precipitation.5 Minute Preview
Measuring Volume
Measure the volume of liquids and solids using beakers, graduated cylinders, overflow cups, and rulers. Water can be poured from one container to another and objects can be added to containers. A pipette can be used to transfer small amounts of water, and a magnifier can be used to observe the meniscus in a graduated cylinder. Test your volume-measurement skills in the "Practice" mode of the Gizmo.5 Minute Preview
Triple Beam Balance
Learn how to determine the mass of an object using a triple beam balance. The mass of a variety of objects can be determined using this simulated version of a common real-world laboratory tool for measurement.5 Minute Preview
Unit Conversions
Use unit conversion tiles to convert from one unit to another. Tiles can be flipped to cancel units. Convert between metric units or between metric and U.S. customary units. Solve distance, time, speed, mass, volume, and density problems.5 Minute Preview
Weight and Mass
Use a balance to measure mass and a spring scale to measure the weight of objects. Compare the masses and weights of objects on Earth, Mars, Jupiter, and the Moon.5 Minute Preview
2: Cell Biology
Cell Division
Begin with a single cell and watch as mitosis and cell division occurs. The cells will go through the steps of interphase, prophase, metaphase, anaphase, telophase, and cytokinesis. The length of the cell cycle can be controlled, and data related to the number of cells present and their current phase can be recorded.5 Minute Preview
Cell Energy Cycle
Explore the processes of photosynthesis and respiration that occur within plant and animal cells. The cyclical nature of the two processes can be constructed visually, and the simplified photosynthesis and respiration formulae can be balanced.5 Minute Preview
Cell Structure
Select a sample cell from an animal, plant, or bacterium and view the cell under a microscope. Select each organelle on the image to learn more about its structure and function. Closeup views and animations of certain organelles is provided.5 Minute Preview
Diffusion
Explore the motion of particles as they bounce around from one side of a room to the other through an adjustable gap or partition. The mass of the particles can be adjusted, as well as the temperature of the room and the initial number of particles. In a real-world context, this can be used to learn about how odors travel, fluids move through gaps, the thermodynamics of gases, and statistical probability.5 Minute Preview
Osmosis
Adjust the concentration of a solute on either side of a membrane in a cell and observe the system as it adjusts to the conditions through osmosis. The initial concentration of the solute can be manipulated, along with the volume of the cell.5 Minute Preview
Paramecium Homeostasis
Observe how a paramecium maintains stable internal conditions in a changing aquatic environment. Water moves into the organism by osmosis, and is pumped out by the contractile vacuole. The concentration of solutes in the water will determine the rate of contractions in the paramecium.5 Minute Preview
Photosynthesis Lab
Study photosynthesis in a variety of conditions. Oxygen production is used to measure the rate of photosynthesis. Light intensity, carbon dioxide levels, temperature, and wavelength of light can all be varied. Determine which conditions are ideal for photosynthesis, and understand how limiting factors affect oxygen production.5 Minute Preview
Virus Lytic Cycle
Release a lytic virus in a group of cells and observe how cells are infected over time and eventually destroyed. Data related to the number of healthy cells, infected cells, and viruses can be recorded over time to determine the time required for the virus to mature within a cell.5 Minute Preview
3: Genetics and Biotechnology
Building DNA
Construct a DNA molecule, examine its double-helix structure, and then go through the DNA replication process. Learn how each component fits into a DNA molecule, and see how a unique, self-replicating code can be created.5 Minute Preview
Chicken Genetics
与已知的基因型品种“纯”鸡,交货hibit specific feather colors, and learn how traits are passed on via codominant genes. Chickens can be stored in cages for future breeding, and the statistics of feather color are reported every time the chickens breed. Punnett squares can be used to predict results.5 Minute Preview
DNA Analysis
Scan the DNA of frogs to produce DNA sequences. Use the DNA sequences to identify possible identical twins and to determine which sections of DNA code for skin color, eye color, and the presence or absence of spots.5 Minute Preview
温度和性别决定Metric
Observe the sex ratios of birds and geckos as they hatch in an incubator. Vary the temperature of the incubator and measure the percentages of male and female hatchlings to determine if temperature has an effect on sex.5 Minute Preview
Hardy-Weinberg Equilibrium
Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population.5 Minute Preview
Human Karyotyping
Sort and pair the images of human chromosomes obtained in a scan. Find differences in the scans of the various patients to find out specific things that can cause disease, as well as determining the sex of the person.5 Minute Preview
继承
创建外星人具有不同特点和品种to produce offspring. Determine which traits are passed down from parents to offspring and which traits are acquired. Offspring can be stored for future experiments or released.5 Minute Preview
Mouse Genetics (One Trait)
Breed "pure" mice with known genotypes that exhibit specific fur colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur color are reported every time a pair of mice breed. Punnett squares can be used to predict results.5 Minute Preview
Mouse Genetics (Two Traits)
Breed "pure" mice with known genotypes that exhibit specific fur and eye colors, and learn how traits are passed on via dominant and recessive genes. Mice can be stored in cages for future breeding, and the statistics of fur and eye color are reported every time a pair of mice breed. Punnett squares can be used to predict results.5 Minute Preview
RNA and Protein Synthesis
Go through the process of synthesizing proteins through RNA transcription and translation. Learn about the many steps involved in protein synthesis including: unzipping of DNA, formation of mRNA, attaching of mRNA to the ribosome, and linking of amino acids to form a protein.5 Minute Preview
4: Evolution
Evolution: Mutation and Selection
Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Inheritance of color occurs according to Mendel's laws and probability. Mutations occur at random, and probability of capture by predators is determined by the insect's camouflage.5 Minute Preview
Evolution: Natural and Artificial Selection
Observe evolution in a fictional population of bugs. Set the background to any color, and see natural selection taking place. Compare the processes of natural and artificial selection. Manipulate the mutation rate, and determine how mutation rate affects adaptation and evolution.5 Minute Preview
Hardy-Weinberg Equilibrium
Set the initial percentages of three types of parrots in a population and track changes in genotype and allele frequency through several generations. Analyze population data to develop an understanding of the Hardy-Weinberg equilibrium. Determine how initial allele percentages will affect the equilibrium state of the population.5 Minute Preview
Human Evolution - Skull Analysis
Compare the skulls of a variety of significant human ancestors, or hominids. Use available tools to measure lengths, areas, and angles of important features. Each skull can be viewed from the front, side, or from below. Additional information regarding the age, location, and discoverer of each skull can be displayed.5 Minute Preview
Microevolution
Observe the effect of predators on a population of parrots with three possible genotypes. The initial percentages and fitness levels of each genotype can be set. Determine how initial fitness levels affect genotype and allele frequencies through several generations. Compare scenarios in which a dominant allele is deleterious, a recessive allele is deleterious, and the heterozygous individual is fittest.5 Minute Preview
Natural Selection
You are a bird hunting moths (both dark and light) that live on trees. As you capture the moths most easily visible against the tree surface, the moth populations change, illustrating the effects of natural selection.5 Minute Preview
Rainfall and Bird Beaks - Metric
Study the thickness of birds' beaks over a five year period as you control the yearly rainfall on an isolated island. As the environmental conditions change, the species must adapt (a real-world consequence) to avoid extinction.5 Minute Preview
5:生态
Coral Reefs 1 - Abiotic Factors
Explore the abiotic factors that affect Caribbean coral reefs. Many factors can be manipulated in this simplified reef model, including ocean temperature and pH, storm severity, and input of excess sediments and nutrients from logging, sewage, and agriculture. Click "Advance year" to see how the reef responds to these changes.5 Minute Preview
Coral Reefs 2 - Biotic Factors
In this followup to the Coral Reefs 1 - Abiotic Factors activity, investigate the impacts of fishing, disease, and invasive species on a model Caribbean coral reef. Many variables can be manipulated, included intensity of fishing, presence of black band and white band disease, and the presence of actual and potential invasive species. Click "Advance year" to see the impacts of these biotic changes.5 Minute Preview
Effect of Environment on New Life Form
Using the scientific method, control the environmental conditions for a fictional alien organism in order to learn how the organism responds to changes in conditions. Sunlight, water, and temperature can be varied to determine their effects on the shape of the aliens.5 Minute Preview
温度和性别决定Metric
Observe the sex ratios of birds and geckos as they hatch in an incubator. Vary the temperature of the incubator and measure the percentages of male and female hatchlings to determine if temperature has an effect on sex.5 Minute Preview
Estimating Population Size
Adjust the number of fish in a lake to be tagged and the number of fish to be recaptured. Use the number of tagged fish in the catch to estimate the number of fish in the lake.5 Minute Preview
Food Chain
In this ecosystem consisting of hawks, snakes, rabbits and grass, the population of each species can be studied as part of a food chain. Disease can be introduced for any species, and the number of animals can be increased or decreased at any time, just like in the real world.5 Minute Preview
Forest Ecosystem
Observe and manipulate the populations of four creatures (trees, deer, bears, and mushrooms) in a forest. Investigate the feeding relationships (food web) in the forest. Determine which creatures are producers, consumers, and decomposers. Pictographs and line graphs show changes in populations over time.5 Minute Preview
Measuring Trees
Measure the height, diameter, and circumference of trees in a forest. Count growth rings to determine the age of each tree. Grow the trees for several years and investigate how growth is affected by precipitation.5 Minute Preview
植物和Snails
Study the production and use of gases by plants and animals. Measure the oxygen and carbon dioxide levels in a test tube containing snails and elodea (a type of plant) in both light and dark conditions. Learn about the interdependence of plants and animals.5 Minute Preview
Pond Ecosystem
Measure the temperature and oxygen content of a pond over the course of a day. Then go fishing to see what types of fish live in the pond. Many different ponds can be investigated to determine the influence of time, temperature, and farms on oxygen levels.5 Minute Preview
Prairie Ecosystem
Observe the populations of grass, prairie dogs, ferrets and foxes in a prairie ecosystem. Investigate feeding relationships and determine the food chain. Bar graphs and line graphs show changes in populations over time.5 Minute Preview
Rabbit Population by Season
Observe the population of rabbits in an environment over many years. The land available to the rabbits and weather conditions can be adjusted to investigate the effects of urban sprawl and unusual weather on wildlife populations.5 Minute Preview
6: Microbes, Protists, and Fungi
Disease Spread
Observe the spread of disease through a group of people. The methods of transmission can be chosen and include person-to-person, airborne, and foodborne as well as any combination thereof. The probability of each form of transmission and number of people in the group can also be adjusted.5 Minute Preview
Paramecium Homeostasis
Observe how a paramecium maintains stable internal conditions in a changing aquatic environment. Water moves into the organism by osmosis, and is pumped out by the contractile vacuole. The concentration of solutes in the water will determine the rate of contractions in the paramecium.5 Minute Preview
Virus Lytic Cycle
Release a lytic virus in a group of cells and observe how cells are infected over time and eventually destroyed. Data related to the number of healthy cells, infected cells, and viruses can be recorded over time to determine the time required for the virus to mature within a cell.5 Minute Preview
7: Plants
Dichotomous Keys
Use dichotomous keys to identify and classify five types of organisms: California albatrosses, Canadian Rockies buttercups, Texas venomous snakes, Virginia evergreens, and Florida cartilagenous fishes. After you have classified every organism, try making your own dichotomous key!5 Minute Preview
Flower Pollination
Observe the steps of pollination and fertilization in flowering plants. Help with many parts of the process by dragging pollen grains to the stigma, dragging sperm to the ovules, and removing petals as the fruit begins to grow. Quiz yourself when you are done by dragging vocabulary words to the correct plant structure.5 Minute Preview
Germination
Plant seeds and watch how many sprout. Examine what factors affect germination. Vary the amount of heat, water, and light the seeds get. Practice designing controlled experiments and using the scientific method.5 Minute Preview
Growing Plants
Investigate the growth of three common garden plants: tomatoes, beans, and turnips. You can change the amount of light each plant gets, the amount of water added each day, and the type of soil the seed is planted in. Observe the effect of each variable on plant height, plant mass, leaf color and leaf size. Determine what conditions produce the tallest and healthiest plants. Height and mass data are displayed on tables and graphs.5 Minute Preview
Photosynthesis Lab
Study photosynthesis in a variety of conditions. Oxygen production is used to measure the rate of photosynthesis. Light intensity, carbon dioxide levels, temperature, and wavelength of light can all be varied. Determine which conditions are ideal for photosynthesis, and understand how limiting factors affect oxygen production.5 Minute Preview
Pollination: Flower to Fruit
Label a diagram that illustrates the anatomy of a flower, and understand the function of each structure. Compare the processes of self pollination and cross pollination, and explore how fertilization takes place in a flowering plant.5 Minute Preview
Seed Germination
Perform experiments with several seed types to see what conditions yield the highest germination (sprouting) rate. Three different types of seeds can be studied, and the temperature, water and light in the germination chamber can be controlled. No two trials will have the same result so repeated trials are recommended.5 Minute Preview
9: Vertebrates
Dichotomous Keys
Use dichotomous keys to identify and classify five types of organisms: California albatrosses, Canadian Rockies buttercups, Texas venomous snakes, Virginia evergreens, and Florida cartilagenous fishes. After you have classified every organism, try making your own dichotomous key!5 Minute Preview
Human Evolution - Skull Analysis
Compare the skulls of a variety of significant human ancestors, or hominids. Use available tools to measure lengths, areas, and angles of important features. Each skull can be viewed from the front, side, or from below. Additional information regarding the age, location, and discoverer of each skull can be displayed.5 Minute Preview
10: Human Biology
Circulatory System
Trace the path of blood through a beating heart and the network of blood vessels that supplies blood to the body. Take blood samples from different blood vessels to observe blood cells and measure the levels of oxygen, carbon dioxide, sugar, and urea.5 Minute Preview
Digestive System
Digestion is a complex process, involving a wide variety of organs and chemicals that work together to break down food, absorb nutrients, and eliminate wastes. But have you ever wondered what would happen if some of those organs were eliminated, or if the sequence was changed? Can the digestive system be improved? Find out by designing your own digestive system with the Digestive System Gizmo.5 Minute Preview
How Free Gizmos Work
Start teaching with20-40 Free Gizmos.See the full list.
Accesslesson materialsfor Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a5 Minute Previewand can only be used for 5 minutes a day.
Free Gizmos change each semester.Thenew collectionwill be available Jul 01, 2023.
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote