第1章:从直线到方程组
1.0:修订
1.1:笛卡尔平面上的点和段
1.2:笛卡尔平面上的直线
求解线性系统(标准形式)
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
1.3:方程组
求解线性系统(标准形式)
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
1.4:笛卡尔平面的半平面
2:统计措施和线性相关
2.0:修订
2.1:图表和统计
轮询:城市
对一个大城市的居民进行民意调查,以确定他们对“是”或“否”问题的反应。估计全城投赞成票的实际比例。检查许多民意调查的结果,以帮助评估单个民意调查结果的可靠性。看看对于足够大的民意调查,正态曲线是如何逼近二项分布的。5分钟预告
反应时间1(图表和统计)
通过抓住掉落的尺子或点击目标来测试你的反应时间。创建一个实验结果的数据集,并计算数据的范围、模式、中位数和平均值。数据可以显示在列表、表格、柱状图或点阵图上。反应时间1学生探索的重点是范围,模式和中位数。5分钟预告
2.2相关性的定性解释
2.3相关性的定量解释
2.4:线性相关的解释
第3章:从相等到相似
3.0:修订
3.1:同余三角形
3.2:相似三角形
3.3:度量关系
4:从功能到建模
4.0:修订
4.1:实函数
距离-时间图-度量
创建一个跑步者的位置与时间的图表,并根据你所做的图表观察跑步者完成40米冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
4.2:二次多项式
4.3:指数函数
4.4:步进、周期和分段函数
第5课:从直角三角形到三角关系
5.0:修订
5.1:三角比率
5.2:寻找缺失的测量值
6:随机实验的概率
6.0:修订
6.1:列举可能性
6.2:主观概率和概率
旋转大转轮!(概率)
站起来!转动大轮子!每次旋转都可能导致无奖、小奖或大奖。轮盘可以由1、10或100名玩家旋转。结果记录在频率表或圆图上。你也可以设计你自己的车轮和一个标志,描述你的车轮的概率。5分钟预告
关于STEM案例
学生们将扮演一名试图解决现实问题的科学家。他们使用科学实践来收集和分析数据,并在解决问题时形成和检验假设。
每个STEM案例都使用实时报告来展示学生的实时成绩。
热图介绍
根据案例的不同,学生完成案例需要30-90分钟。
学生进度自动保存,以便STEM案例可以在多个课程中完成。
每个STEM案例都有多个适合年级的版本或级别。
每个STEM案例级别都有一本相关的手册。这些互动指南侧重于案例背后的科学概念。