Earth Science: Geology, the Environment, and the Universe
Chapter 1. The Nature of Science
1.1. Earth Science
Ocean Mapping
Use a sonar on a boat to remotely measure the depth of an ocean at various locations. Describe multiple points on the ocean floor using their latitude, longitude, and depth. View maps of ocean depth in two and three dimensions, and use these maps to plot a safe route for ships to follow.5 Minute Preview
Hurricane Motion
Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols.5 Minute Preview
Weather Maps
Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts.5 Minute Preview
Solar System Explorer
Survey the solar system, observing the length of a year and the orbital path of each object. The positions of the eight official planets are displayed, as well as one dwarf planet, Pluto. Learn about Kepler's Laws and how planets are classified.5 Minute Preview
1.2. Methods of Scientists
Chapter 2. Mapping Our World
2.1.纬度和经度
Weather Maps
Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts.5 Minute Preview
2.2. Types of Maps
Weather Maps
Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts.5 Minute Preview
Ocean Mapping
Use a sonar on a boat to remotely measure the depth of an ocean at various locations. Describe multiple points on the ocean floor using their latitude, longitude, and depth. View maps of ocean depth in two and three dimensions, and use these maps to plot a safe route for ships to follow.5 Minute Preview
Chapter 3. Matter and Atomic Structure
3.1. What are elements?
Element Builder
Use protons, neutrons, and electrons to build elements. As the number of protons, neutrons, and electrons changes, information such as the name and symbol of the element, the Z, N, and A numbers, the electron dot diagram, and the group and period from the periodic table are shown. Each element is classified as a metal, metalloid, or nonmetal, and its state at room temperature is also given.5 Minute Preview
3.3. States of Matter
Freezing Point of Salt Water
Control the temperature of a beaker of water. As the temperature drops below the freezing point, a transformation of state will occur that can be viewed on a molecular level. Salt can be added to the water to see its effect on the freezing point of water.5 Minute Preview
Chapter 4. Minerals
4.1. What is a mineral?
Rock Classification
Try to classify a dozen different rock samples based on their appearance. Common characteristics of each major rock type are described. Rocks also can be classified by where they formed.5 Minute Preview
4.2. Identifying Minerals
Rock Classification
Try to classify a dozen different rock samples based on their appearance. Common characteristics of each major rock type are described. Rocks also can be classified by where they formed.5 Minute Preview
Chapter 5. Igneous Rocks
5.1. What are igneous rocks?
Rock Cycle
Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust.5 Minute Preview
5.2. Classifying Igneous Rocks
Rock Classification
Try to classify a dozen different rock samples based on their appearance. Common characteristics of each major rock type are described. Rocks also can be classified by where they formed.5 Minute Preview
Chapter 6. Sedimentary and Metamorphic Rocks
6.1. Formation of Sedimentary Rocks
Rock Cycle
Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust.5 Minute Preview
6.2. Types of Sedimentary Rocks
Rock Classification
Try to classify a dozen different rock samples based on their appearance. Common characteristics of each major rock type are described. Rocks also can be classified by where they formed.5 Minute Preview
6.3. Metamorphic Rocks
Rock Cycle
Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust.5 Minute Preview
Rock Classification
Try to classify a dozen different rock samples based on their appearance. Common characteristics of each major rock type are described. Rocks also can be classified by where they formed.5 Minute Preview
Chapter 7. Weathering, Erosion, and Soil
7.1. Weathering, Erosion, and Soil
Water Cycle
Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations.5 Minute Preview
Rock Cycle
Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust.5 Minute Preview
7.2. Erosion and Deposition
Longitudinal Waves
Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure.5 Minute Preview
沿海风和中心思想ds
沿海regi观察每天的天气状况on. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes.5 Minute Preview
7.3. Formation of Soil
Rock Cycle
Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust.5 Minute Preview
Chapter 9. Surface Water
9.1. Surface Water Movement
Water Cycle
Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations.5 Minute Preview
Chapter 10. Groundwater
10.1. Movement and Storage of Groundwater
Porosity
Pour water on a variety of sediment samples to find how much water can be absorbed by the sample (porosity) and how easily water flows through the sample (permeability).5 Minute Preview
10.3. Groundwater Systems
Water Cycle
Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations.5 Minute Preview
Chapter 11. Atmosphere
11.2. State of the Atmosphere
Greenhouse Effect
Within this simulated region of land, daytime's rising temperature and the falling temperature at night can be measured, along with heat flow in and out of the system. The level of greenhouse gases present in the atmosphere at any given time can be adjusted, allowing the long-term effects to be investigated.5 Minute Preview
传热导电
An insulated beaker of hot water is connected to a beaker of cold water with a conducting bar, and over time the temperatures of the beakers equalize as heat is transferred through the bar. Four materials (aluminum, copper, steel, and glass) are available for the bar.5 Minute Preview
沿海风和中心思想ds
沿海regi观察每天的天气状况on. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes.5 Minute Preview
Weather Maps
Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts.5 Minute Preview
Relative Humidity
Measure the temperature on wet and dry bulb thermometers to determine relative humidity. Measure the dew point by cooling a bucket of water until condensation forms on the surface. See how the relative humidity and dew point change over the course of a day.5 Minute Preview
11.3. Moisture in the Atmosphere
Relative Humidity
Measure the temperature on wet and dry bulb thermometers to determine relative humidity. Measure the dew point by cooling a bucket of water until condensation forms on the surface. See how the relative humidity and dew point change over the course of a day.5 Minute Preview
Water Cycle
Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations.5 Minute Preview
沿海风和中心思想ds
沿海regi观察每天的天气状况on. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes.5 Minute Preview
Chapter 12. Meteorology
12.1. The Causes of Weather
沿海风和中心思想ds
沿海regi观察每天的天气状况on. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes.5 Minute Preview
12.2. Weather Systems
沿海风和中心思想ds
沿海regi观察每天的天气状况on. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes.5 Minute Preview
12.3. Gathering Weather Data
Hurricane Motion
Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols.5 Minute Preview
Weather Maps
Learn about standard symbols used in meteorology to construct weather maps. Rain, sleet, snow, temperature, cloud cover, wind speed and direction, and atmospheric pressure can all be recorded at two different weather stations on a map. Describe weather patterns characteristic of high-pressure systems, low-pressure systems, warm fronts, and cold fronts.5 Minute Preview
12.4. Weather Analysis
Hurricane Motion
Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols.5 Minute Preview
Chapter 13. The Nature of Storms
13.3. Tropical Storms
Hurricane Motion
Use data from up to three weather stations to predict the motion of a hurricane. The wind speed, wind direction, cloud cover and air pressure are provided for each station using standard weather symbols.5 Minute Preview
Chapter 14. Climate
14.1. What is climate?
Seasons: Why do we have them?
Learn why the temperature in the summertime is higher than it is in the winter by studying the amount of light striking the Earth. Experiment with a plate detector to measure the amount of light striking the plate as the angle of the plate is adjusted (and then use a group of plates placed at different locations on the Earth) and measure the incoming radiation on each plate.5 Minute Preview
沿海风和中心思想ds
沿海regi观察每天的天气状况on. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes.5 Minute Preview
14.4. The Human Factor
Greenhouse Effect
Within this simulated region of land, daytime's rising temperature and the falling temperature at night can be measured, along with heat flow in and out of the system. The level of greenhouse gases present in the atmosphere at any given time can be adjusted, allowing the long-term effects to be investigated.5 Minute Preview
Chapter 15. Physical Oceanography
15.1. The Oceans
Water Cycle
Control the path of a drop of water as it travels through the water cycle. Many alternatives are presented at each stage. Determine how the water moves from one location to another, and learn how water resources are distributed in these locations.5 Minute Preview
Ocean Mapping
Use a sonar on a boat to remotely measure the depth of an ocean at various locations. Describe multiple points on the ocean floor using their latitude, longitude, and depth. View maps of ocean depth in two and three dimensions, and use these maps to plot a safe route for ships to follow.5 Minute Preview
15.2. Seawater
Solubility and Temperature
Add varying amounts of a chemical to a beaker of water to create a solution, observe that the chemical dissolves in the water at first, and then measure the concentration of the solution at the saturation point. Either potassium nitrate or sodium chloride can be added to the water, and the temperature of the water can be adjusted.5 Minute Preview
15.3.海洋运动
Tides
Gain an understanding of high, low, spring, and neap tides on Earth by observing the tidal heights and the positions of the Earth, Moon, and Sun. Tidal bulges can be observed from space, and water depths can be recorded from a dock by the ocean.5 Minute Preview
Chapter 16. The Marine Environment
16.1. Shoreline Features
沿海风和中心思想ds
沿海regi观察每天的天气状况on. Measure temperatures and wind speeds at any location and use this data to map convection currents that form during the day and night. Explain the origin of land breezes and sea breezes.5 Minute Preview
16.2. The Seafloor
Ocean Mapping
Use a sonar on a boat to remotely measure the depth of an ocean at various locations. Describe multiple points on the ocean floor using their latitude, longitude, and depth. View maps of ocean depth in two and three dimensions, and use these maps to plot a safe route for ships to follow.5 Minute Preview
Chapter 17. Plate Tectonics
17.1. Drifting Continents
Plate Tectonics
Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth.5 Minute Preview
17.2. Seafloor Spreading
Plate Tectonics
Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth.5 Minute Preview
17.3. Theory of Plate Tectonics
Plate Tectonics
Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth.5 Minute Preview
Chapter 18. Volcanic Activity
18.1. Magma
Rock Cycle
Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust.5 Minute Preview
18.2. Intrusive Activity
Rock Cycle
Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust.5 Minute Preview
18.3. Volcanoes
Rock Cycle
Play the role of a piece of rock moving through the rock cycle. Select a starting location and follow many possible paths throughout the cycle. Learn how rocks are formed, weathered, eroded, and reformed as they move from Earth's surface to locations deep within the crust.5 Minute Preview
Chapter 19. Earthquakes
19.1. Forces within Earth
Plate Tectonics
Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth.5 Minute Preview
19.2. Seismic Waves and Earth's Interior
Longitudinal Waves
Observe the propagation of longitudinal (compression) waves in a closed or open tube with evenly-spaced dividers. The strength and frequency of the waves can be manipulated, or waves can be observed as individual pulses. Compare the movement of dividers to graphs of displacement, velocity, acceleration and pressure.5 Minute Preview
19.3. Measuring and Locating Earthquakes
Earthquakes 1 - Recording Station
Using an earthquake recording station, learn how to determine the distance between the station and an earthquake based on the time difference between the arrival of the primary and secondary seismic waves. Use this data to find the epicenter in the Earthquakes 2 - Location of Epicenter Gizmo.5 Minute Preview
Earthquakes 2 - Determination of Epicenter
Locate the epicenter of an earthquake by analyzing seismic data from three recording stations. Measure difference in P- and S-wave arrival times, then use data from the Earthquakes 1 - Recording Station Gizmo to find the distance of the epicenter from each station.5 Minute Preview
Chapter 20. Mountain Building
20.1. Crust-Mantle Relationships
Plate Tectonics
Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth.5 Minute Preview
20.2. Convergent-Boundary Mountains
Plate Tectonics
Move the Earth's crust at various locations to observe the effects of the motion of the tectonic plates, including volcanic eruptions. Information about each of the major types of plate boundaries is shown, along with their locations on Earth.5 Minute Preview
Chapter 21. Fossils and the Rock Record
21.3. Absolute-Age Dating of Rocks
Half-life
Investigate the decay of a radioactive substance. The half-life and the number of radioactive atoms can be adjusted, and theoretical or random decay can be observed. Data can be interpreted visually using a dynamic graph, a bar chart, and a table. Determine the half-lives of two sample isotopes as well as samples with randomly generated half-lives.5 Minute Preview
Chapter 25. Earth Resources
25.4. Water Resources
Water Pollution
Get to know the four main types of pollution present in the environment, and then look at a variety of real-world examples as you try to guess what type of pollution is represented by each situation. All of the real-world situations can be viewed every day in different parts of the world.5 Minute Preview
Chapter 27. Human Impact on Earth Resources
27.3. Human Impact on Air Resources
Greenhouse Effect
Within this simulated region of land, daytime's rising temperature and the falling temperature at night can be measured, along with heat flow in and out of the system. The level of greenhouse gases present in the atmosphere at any given time can be adjusted, allowing the long-term effects to be investigated.5 Minute Preview
27.4. Human Impact on Water Resources
Water Pollution
Get to know the four main types of pollution present in the environment, and then look at a variety of real-world examples as you try to guess what type of pollution is represented by each situation. All of the real-world situations can be viewed every day in different parts of the world.5 Minute Preview
Chapter 28. The Sun-Earth-Moon Systm
28.2. The Moon
Moonrise, Moonset, and Phases
Gain an understanding of moonrise and moonset times by observing the relative positions of Earth and the Moon along with a view of the Moon from Earth. A line shows the horizon for a person standing on Earth so that moonrise and moonset times can be determined.5 Minute Preview
Phases of the Moon
Understand the phases of the Moon by observing the positions of the Moon, Earth and Sun. A view of the Moon from Earth is shown on the right as the Moon orbits Earth. Learn the names of Moon phases and in what order they occur. Click Play to watch the Moon go around, or click Pause and drag the Moon yourself.5 Minute Preview
Chapter 29. Our Solar System
29.1. Overview of Our Solar System
Solar System Explorer
Survey the solar system, observing the length of a year and the orbital path of each object. The positions of the eight official planets are displayed, as well as one dwarf planet, Pluto. Learn about Kepler's Laws and how planets are classified.5 Minute Preview
29.2. The Terrestrial Planets
Solar System Explorer
Survey the solar system, observing the length of a year and the orbital path of each object. The positions of the eight official planets are displayed, as well as one dwarf planet, Pluto. Learn about Kepler's Laws and how planets are classified.5 Minute Preview
29.3. The Gas Giant Planets
Solar System Explorer
Survey the solar system, observing the length of a year and the orbital path of each object. The positions of the eight official planets are displayed, as well as one dwarf planet, Pluto. Learn about Kepler's Laws and how planets are classified.5 Minute Preview
Chapter 30. Stars
30.2. Measuring the Stars
Herschel Experiment
Shine sunlight through a prism and use a thermometer to measure the temperature in different regions of the spectrum. The thermometer can be dragged through the visible spectrum and beyond. This recreates the experiment of William Herschel that led to the discovery of infrared radiation in 1800.5 Minute Preview
30.3. Stellar Evolution
H-R Diagram
A collection of stars visible from Earth can be arranged and classified based on their color, temperature, luminosity, radius, and mass. This can be done using one or two-dimensional plots, including a Hertzsprung-Russell diagram of luminosity vs. temperature.5 Minute Preview
How Free Gizmos Work
Start teaching with20-40 Free Gizmos.See the full list.
Accesslesson materialsfor Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a5 Minute Previewand can only be used for 5 minutes a day.
Free Gizmos change each semester.Thenew collectionwill be available Jul 01, 2023.
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote