这种相关性列出了该州课程标准推荐的小发明。点击下面的任何Gizmo标题了解更多信息。
1:学生将了解如何测量、计算和描述物体的运动,包括位置、时间、速度和加速度。
1.1:用位置、时间和速度来描述物体的运动。
1.1.答:利用物体两次或两次以上的位置测量数据,计算运动物体的平均速度。
研究一个物体落到地面时的运动。各种各样的物体可以被比较,它们的运动可以在真空、正常空气和密度较大的空气中观察到。位置、速度和加速度随着时间的推移而测量,并且可以显示物体上的力。使用手动设置,可以调整物体的质量、半径、高度和初始速度,以及空气密度和风。5分钟预告
1.1.d:根据显示物体在给定时间位置的数据,确定并比较物体的平均速度和瞬时速度。
研究一个物体落到地面时的运动。各种各样的物体可以被比较,它们的运动可以在真空、正常空气和密度较大的空气中观察到。位置、速度和加速度随着时间的推移而测量,并且可以显示物体上的力。使用手动设置,可以调整物体的质量、半径、高度和初始速度,以及空气密度和风。5分钟预告
1.1.e::收集、绘制和解释位置与时间的数据,以描述一个对象的运动,并将该运动与另一个对象的运动进行比较。
创建一个跑步者的位置与时间的图表,并根据你所做的图表观察跑步者完成40米冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
创建一个跑步者的位置与时间的图表,并根据你所做的图表观察跑步者跑40米。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
研究一个物体落到地面时的运动。各种各样的物体可以被比较,它们的运动可以在真空、正常空气和密度较大的空气中观察到。位置、速度和加速度随着时间的推移而测量,并且可以显示物体上的力。使用手动设置,可以调整物体的质量、半径、高度和初始速度,以及空气密度和风。5分钟预告
1.2:根据速度、时间和加速度来分析物体的运动。
1.2.答:从显示给定时间速度的数据中确定物体的平均加速度。
向树上的猴子发射香蕉炮。香蕉从大炮射出的那一刻,猴子从树上掉了下来。确定大炮的瞄准位置,让猴子抓住香蕉。大炮的位置,发射角度和香蕉的初始速度可以改变。学生可以观察到猴子和香蕉的速度矢量和路径。5分钟预告
研究一个物体落到地面时的运动。各种各样的物体可以被比较,它们的运动可以在真空、正常空气和密度较大的空气中观察到。位置、速度和加速度随着时间的推移而测量,并且可以显示物体上的力。使用手动设置,可以调整物体的质量、半径、高度和初始速度,以及空气密度和风。5分钟预告
试着通过调整高尔夫球的速度和发射角度来一杆进洞。探索弹丸运动的物理摩擦或理想设置。水平和垂直速度矢量可以显示,以及球的路径。高尔夫球手的高度和重力也可以调节。5分钟预告
1.2.c::收集、绘制和解释速度与时间的数据,以描述物体的运动。
创建一个跑步者的位置与时间的图表,并根据你所做的图表观察跑步者跑40米。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
研究一个物体落到地面时的运动。各种各样的物体可以被比较,它们的运动可以在真空、正常空气和密度较大的空气中观察到。位置、速度和加速度随着时间的推移而测量,并且可以显示物体上的力。使用手动设置,可以调整物体的质量、半径、高度和初始速度,以及空气密度和风。5分钟预告
1.2.d::描述一个物体在圆周路径上匀速运动的加速度(即匀速,但改变方向)。
测量圆周运动物体的位置、速度和加速度(分量和大小)。可以控制物体的半径和速度,以及物体的质量。作用在物体上的力也可以记录下来。5分钟预告
1.2.e:分析一个物体随时间的速度和加速度。
向树上的猴子发射香蕉炮。香蕉从大炮射出的那一刻,猴子从树上掉了下来。确定大炮的瞄准位置,让猴子抓住香蕉。大炮的位置,发射角度和香蕉的初始速度可以改变。学生可以观察到猴子和香蕉的速度矢量和路径。5分钟预告
研究一个物体落到地面时的运动。各种各样的物体可以被比较,它们的运动可以在真空、正常空气和密度较大的空气中观察到。位置、速度和加速度随着时间的推移而测量,并且可以显示物体上的力。使用手动设置,可以调整物体的质量、半径、高度和初始速度,以及空气密度和风。5分钟预告
试着通过调整高尔夫球的速度和发射角度来一杆进洞。探索弹丸运动的物理摩擦或理想设置。水平和垂直速度矢量可以显示,以及球的路径。高尔夫球手的高度和重力也可以调节。5分钟预告
1.4 .用牛顿第一定律来解释物体的运动。
1.4.a:描述一个运动物体在平衡力作用下的运动。
通过在线性轨道上试验一辆推车(上面最多放三个风扇)来了解牛顿定律。手推车有质量,每个扇子也有质量。风扇在打开时产生恒定的力,并且可以随着测量推车的位置、速度和加速度而改变风扇的方向。5分钟预告
研究一个物体落到地面时的运动。各种各样的物体可以被比较,它们的运动可以在真空、正常空气和密度较大的空气中观察到。位置、速度和加速度随着时间的推移而测量,并且可以显示物体上的力。使用手动设置,可以调整物体的质量、半径、高度和初始速度,以及空气密度和风。5分钟预告
1.4.b:描述一个静止物体在平衡力作用下的运动。
通过在线性轨道上试验一辆推车(上面最多放三个风扇)来了解牛顿定律。手推车有质量,每个扇子也有质量。风扇在打开时产生恒定的力,并且可以随着测量推车的位置、速度和加速度而改变风扇的方向。5分钟预告
学生将理解力、质量和加速度之间的关系。。
2.1:分析作用在物体上的力。
2.1.d::计算作用在物体上的合力。
用滑轮上的无质量绳子连接两个物体,测量它们的高度和速度。观察整个模拟过程中作用在每个质量上的力。计算物体的加速度,并将这些计算与牛顿运动定律联系起来。每个物体的质量都可以控制,滑轮的质量和半径也可以控制。5分钟预告
2.2:使用牛顿?S第二定律,把一个物体的力、质量和加速度联系起来。
2.2.a:确定物体上的合力和物体之间的关系? ?年代加速度。
用滑轮上的无质量绳子连接两个物体,测量它们的高度和速度。观察整个模拟过程中作用在每个质量上的力。计算物体的加速度,并将这些计算与牛顿运动定律联系起来。每个物体的质量都可以控制,滑轮的质量和半径也可以控制。5分钟预告
研究一个物体落到地面时的运动。各种各样的物体可以被比较,它们的运动可以在真空、正常空气和密度较大的空气中观察到。位置、速度和加速度随着时间的推移而测量,并且可以显示物体上的力。使用手动设置,可以调整物体的质量、半径、高度和初始速度,以及空气密度和风。5分钟预告
2.2.b:关联一个对象的效果?S质量与加速度之比,当施加不平衡力时。
用滑轮上的无质量绳子连接两个物体,测量它们的高度和速度。观察整个模拟过程中作用在每个质量上的力。计算物体的加速度,并将这些计算与牛顿运动定律联系起来。每个物体的质量都可以控制,滑轮的质量和半径也可以控制。5分钟预告
通过在线性轨道上试验一辆推车(上面最多放三个风扇)来了解牛顿定律。手推车有质量,每个扇子也有质量。风扇在打开时产生恒定的力,并且可以随着测量推车的位置、速度和加速度而改变风扇的方向。5分钟预告
研究一个物体落到地面时的运动。各种各样的物体可以被比较,它们的运动可以在真空、正常空气和密度较大的空气中观察到。位置、速度和加速度随着时间的推移而测量,并且可以显示物体上的力。使用手动设置,可以调整物体的质量、半径、高度和初始速度,以及空气密度和风。5分钟预告
2.2.c:从实验数据中确定力、质量和加速度之间的关系,并将结果与牛顿?S第二定律。
用滑轮上的无质量绳子连接两个物体,测量它们的高度和速度。观察整个模拟过程中作用在每个质量上的力。计算物体的加速度,并将这些计算与牛顿运动定律联系起来。每个物体的质量都可以控制,滑轮的质量和半径也可以控制。5分钟预告
通过在线性轨道上试验一辆推车(上面最多放三个风扇)来了解牛顿定律。手推车有质量,每个扇子也有质量。风扇在打开时产生恒定的力,并且可以随着测量推车的位置、速度和加速度而改变风扇的方向。5分钟预告
研究一个物体落到地面时的运动。各种各样的物体可以被比较,它们的运动可以在真空、正常空气和密度较大的空气中观察到。位置、速度和加速度随着时间的推移而测量,并且可以显示物体上的力。使用手动设置,可以调整物体的质量、半径、高度和初始速度,以及空气密度和风。5分钟预告
2.2.d:预测多个力(如摩擦力、重力和法向力)对一个物体的综合影响? ?年代运动。
用滑轮上的无质量绳子连接两个物体,测量它们的高度和速度。观察整个模拟过程中作用在每个质量上的力。计算物体的加速度,并将这些计算与牛顿运动定律联系起来。每个物体的质量都可以控制,滑轮的质量和半径也可以控制。5分钟预告
通过在线性轨道上试验一辆推车(上面最多放三个风扇)来了解牛顿定律。手推车有质量,每个扇子也有质量。风扇在打开时产生恒定的力,并且可以随着测量推车的位置、速度和加速度而改变风扇的方向。5分钟预告
2.3:解释一下牛顿所描述的力是成对作用的? ?S第三定律。
2.3.a:识别作用于两个物体(例如,两个电荷,一本书和它上面的桌子,一个人和一根被拉的绳子)之间的力对(例如,作用-反作用力,相等和相反)。
通过在线性轨道上试验一辆推车(上面最多放三个风扇)来了解牛顿定律。手推车有质量,每个扇子也有质量。风扇在打开时产生恒定的力,并且可以随着测量推车的位置、速度和加速度而改变风扇的方向。5分钟预告
学生将了解决定重力和电力强度的因素。
3.1:将引力的强度与两个物体之间的距离和物体的质量联系起来(即牛顿?S万有引力定律)。
3.1.a:研究质量如何影响引力(例如,弹簧秤、天平或其他发现质量和引力之间关系的方法)。
拖动两个物体,观察它们位置变化时它们之间的引力。每个物体的质量都可以调整,引力以矢量和数字的形式显示。5分钟预告
带正电荷、负电荷或不带电荷的髓球悬挂在琴弦上。可以调节髓球的电荷和质量,以及弦的长度,这将使髓球改变位置。随着变量的调整,可以测量距离,并且可以显示作用在球上的力(库仑和引力)。5分钟预告
3.1.c:描述物体之间的距离如何影响引力(例如,月球和太阳对地球上物体的引力的影响)。
拖动两个物体,观察它们位置变化时它们之间的引力。每个物体的质量都可以调整,引力以矢量和数字的形式显示。5分钟预告
带正电荷、负电荷或不带电荷的髓球悬挂在琴弦上。可以调节髓球的电荷和质量,以及弦的长度,这将使髓球改变位置。随着变量的调整,可以测量距离,并且可以显示作用在球上的力(库仑和引力)。5分钟预告
3.1.d:解释如何用证据和推理来描述自然界的基本力,如引力。
研究一个物体落到地面时的运动。各种各样的物体可以被比较,它们的运动可以在真空、正常空气和密度较大的空气中观察到。位置、速度和加速度随着时间的推移而测量,并且可以显示物体上的力。使用手动设置,可以调整物体的质量、半径、高度和初始速度,以及空气密度和风。5分钟预告
拖动两个物体,观察它们位置变化时它们之间的引力。每个物体的质量都可以调整,引力以矢量和数字的形式显示。5分钟预告
带正电荷、负电荷或不带电荷的髓球悬挂在琴弦上。可以调节髓球的电荷和质量,以及弦的长度,这将使髓球改变位置。随着变量的调整,可以测量距离,并且可以显示作用在球上的力(库仑和引力)。5分钟预告
3.2:描述影响电力的因素(即库仑?s法)。
3.2.b:描述一下电荷量是如何影响电力的。
拖拽两个带电粒子,观察它们位置变化时它们之间的库仑力。每个物体的电荷都可以调整,随着物体之间距离的改变,力以数字和矢量的形式显示出来。5分钟预告
带正电荷、负电荷或不带电荷的髓球悬挂在琴弦上。可以调节髓球的电荷和质量,以及弦的长度,这将使髓球改变位置。随着变量的调整,可以测量距离,并且可以显示作用在球上的力(库仑和引力)。5分钟预告
3.2.c:研究带电物体之间的距离与电力强度的关系。
拖拽两个带电粒子,观察它们位置变化时它们之间的库仑力。每个物体的电荷都可以调整,随着物体之间距离的改变,力以数字和矢量的形式显示出来。5分钟预告
带正电荷、负电荷或不带电荷的髓球悬挂在琴弦上。可以调节髓球的电荷和质量,以及弦的长度,这将使髓球改变位置。随着变量的调整,可以测量距离,并且可以显示作用在球上的力(库仑和引力)。5分钟预告
学生将理解能量的传递和守恒。。
4.1::确定系统中的动能和势能。
4.1.a:识别各种类型的势能(即重力势能、弹性势能、化学势能、静电势能、核能势能)。
用摆做实验,了解简谐运动中的能量守恒。摆的质量、长度和重力加速度可以调节,初始角度也可以调节。摆动摆的势能、动能和总能量可以显示在表格、条形图或图形上。5分钟预告
研究在有或没有摩擦的情况下,一块从斜面上滑下的能量和运动。斜坡角度可以变化,可以使用多种材料的块和斜坡。势能和动能报告,当块滑下斜坡。两个实验可以同时进行,当因素变化时比较结果。5分钟预告
当你把几个物体放在不同高度的架子上时,比较它们的势能。要知道两个不同高度的物体可以有相同的势能,而两个相同高度的物体可以有不同的势能。5分钟预告
调整玩具车过山车上的山丘,看看当汽车朝着轨道尽头的鸡蛋(可以打破的)倾斜时会发生什么。三座小山的高度,以及汽车的质量和赛道的摩擦力都可以控制。在汽车行驶过程中,可以看到各种运动变量的图形,包括位置、速度、加速度、势能、动能和总能量。5分钟预告
4.1.b:给定物体的速度和质量,计算物体的动能。
在无摩擦空气轨道上调整两个滑翔机的质量和速度。测量每个滑翔机的速度、动量和动能,因为它们彼此接近和碰撞。碰撞可以是弹性的也可以是非弹性的。5分钟预告
研究在有或没有摩擦的情况下,一块从斜面上滑下的能量和运动。斜坡角度可以变化,可以使用多种材料的块和斜坡。势能和动能报告,当块滑下斜坡。两个实验可以同时进行,当因素变化时比较结果。5分钟预告
4.2:描述能量守恒的系统。
4.2.a:用总能量描述一个封闭系统。
一个下落的圆柱体与一个旋转的螺旋桨相连,螺旋桨搅动并加热烧杯中的水。圆柱体的质量和高度,以及水的数量和初始温度都可以调节。当能量从一种形式转换为另一种形式时,测量水的温度。5分钟预告
研究在有或没有摩擦的情况下,一块从斜面上滑下的能量和运动。斜坡角度可以变化,可以使用多种材料的块和斜坡。势能和动能报告,当块滑下斜坡。两个实验可以同时进行,当因素变化时比较结果。5分钟预告
4.2.b:把一个系统中动能和势能之间的转换联系起来(例如,移动磁铁在线圈中感应电流,过山车,内燃机)。
在无摩擦空气轨道上调整两个滑翔机的质量和速度。测量每个滑翔机的速度、动量和动能,因为它们彼此接近和碰撞。碰撞可以是弹性的也可以是非弹性的。5分钟预告
一个下落的圆柱体与一个旋转的螺旋桨相连,螺旋桨搅动并加热烧杯中的水。圆柱体的质量和高度,以及水的数量和初始温度都可以调节。当能量从一种形式转换为另一种形式时,测量水的温度。5分钟预告
用摆做实验,了解简谐运动中的能量守恒。摆的质量、长度和重力加速度可以调节,初始角度也可以调节。摆动摆的势能、动能和总能量可以显示在表格、条形图或图形上。5分钟预告
研究在有或没有摩擦的情况下,一块从斜面上滑下的能量和运动。斜坡角度可以变化,可以使用多种材料的块和斜坡。势能和动能报告,当块滑下斜坡。两个实验可以同时进行,当因素变化时比较结果。5分钟预告
调整玩具车过山车上的山丘,看看当汽车朝着轨道尽头的鸡蛋(可以打破的)倾斜时会发生什么。三座小山的高度,以及汽车的质量和赛道的摩擦力都可以控制。在汽车行驶过程中,可以看到各种运动变量的图形,包括位置、速度、加速度、势能、动能和总能量。5分钟预告
4.2.c:收集数据并计算物体的重力势能和动能(例如,钟摆,下坡的水,从高处落下的球),并将其与系统的能量守恒联系起来。
研究在有或没有摩擦的情况下,一块从斜面上滑下的能量和运动。斜坡角度可以变化,可以使用多种材料的块和斜坡。势能和动能报告,当块滑下斜坡。两个实验可以同时进行,当因素变化时比较结果。5分钟预告
4.3:描述常见的能源转换和对能源供应的影响。
4.3.b:研究热能通过传导、对流和辐射的传递。
让阳光透过棱镜,用温度计测量光谱不同区域的温度。温度计可以被拖过可见光谱甚至更远。这再现了威廉·赫歇尔的实验,该实验导致1800年红外辐射的发现。5分钟预告
4.3.d:研究和报告发电厂的能量转换(例如,从化学到热到电,从核到热到机械到电,从引力到动能到机械到电),并包括每次转换过程中的能量损失。
一个下落的圆柱体与一个旋转的螺旋桨相连,螺旋桨搅动并加热烧杯中的水。圆柱体的质量和高度,以及水的数量和初始温度都可以调节。当能量从一种形式转换为另一种形式时,测量水的温度。5分钟预告
研究在有或没有摩擦的情况下,一块从斜面上滑下的能量和运动。斜坡角度可以变化,可以使用多种材料的块和斜坡。势能和动能报告,当块滑下斜坡。两个实验可以同时进行,当因素变化时比较结果。5分钟预告
学生将了解波的性质和应用。。
5.1:从波的一般性质方面展示对机械波的理解。
5.1.b:研究和比较波的反射、折射和衍射。
用白光或单色光束照射棱镜。探索棱镜如何折射光线,并调查影响折射量的因素。棱镜的折射率,棱镜的宽度,棱镜的角度,光的角度,光的波长可以调节。5分钟预告
观察穿过凸透镜或凹透镜的光线。操纵物体的位置和镜头的焦距,测量产生的图像的距离和大小。5分钟预告
观察从凸面镜或凹面镜反射出来的光线。操纵物体的位置和镜子的焦距,并测量得到的图像的距离和大小。5分钟预告
确定光束从一种介质移动到另一种介质的折射角度。入射角和每个折射率都可以变化。使用所提供的工具,可以测量折射角,并且还可以比较每种物质中波的波长和频率。5分钟预告
5.1.c:提供在自然界中通常观察到和/或在技术应用中使用的波的例子。
使用地震记录台站,学习如何根据一次地震波和二次地震波到达的时间差来确定台站和地震之间的距离。使用此数据在地震2中找到震中-震中小装置的位置。5分钟预告
在模拟波纹池中研究波动、衍射、干涉和折射。可以选择各种各样的场景,包括带有一个或两个间隙的障碍物、多个波源、反射障碍物或水下岩石。波的波长和强度可以调节,以及水槽中的阻尼量。5分钟预告
5.1.d:识别波的速度、波长和频率之间的关系。
在模拟波纹池中研究波动、衍射、干涉和折射。可以选择各种各样的场景,包括带有一个或两个间隙的障碍物、多个波源、反射障碍物或水下岩石。波的波长和强度可以调节,以及水槽中的阻尼量。5分钟预告
5.1.e:解释从运动物体发出的机械波在接近和离开时的频率变化(即多普勒效应)。
观察移动车辆发出的声波。测量车辆移动时前后声波的频率,说明多普勒效应。声波的频率、声源的速度和声速都可以被操纵。车辆的运动可以是线性的、振荡的或圆形的。5分钟预告
推导出一个公式来计算迎面而来声源和后退声源的频率。同时,计算由一个移动的观察者和一个静止的声源引起的多普勒频移。源速度、声速、观察者速度和声音频率都可以被操纵。5分钟预告
观察纵向(压缩)波在具有均匀间隔分隔器的封闭或开放管中的传播。波的强度和频率可以被控制,或者波可以作为单独的脉冲来观察。将分隔器的运动与位移、速度、加速度和压力的图形进行比较。5分钟预告
5.2:描述电磁辐射和可见光的性质。
5.2.d:解释来自运动物体的电磁波在接近和远离时的频率变化(即多普勒效应,红/蓝移)。
观察移动车辆发出的声波。测量车辆移动时前后声波的频率,说明多普勒效应。声波的频率、声源的速度和声速都可以被操纵。车辆的运动可以是线性的、振荡的或圆形的。5分钟预告
推导出一个公式来计算迎面而来声源和后退声源的频率。同时,计算由一个移动的观察者和一个静止的声源引起的多普勒频移。源速度、声速、观察者速度和声音频率都可以被操纵。5分钟预告