这种相关性列出了该州课程标准推荐的小发明。点击下面的任何Gizmo标题了解更多信息。
mgse9 - 12. n。问:数量
mgse9 n.q——12.。1b:使用量纲分析转换单位和汇率(英语-英语和公制之间没有提供转换因子,英语和公制之间有转换因子);
使用单位转换磁贴从一个单位转换到另一个单位。可以翻转磁贴来取消单位。在公制单位之间或在公制和美国习惯单位之间进行转换。解决距离、时间、速度、质量、体积和密度问题。5分钟预告
mgse9 - 12. a。SSE:在表达式中看到结构
mgse9 a.sse——12.。1a:根据上下文解释表达式的部分内容,如术语、因子和系数。
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
确定使用激进表达式完成操作的正确步骤。使用逐步反馈来诊断不正确的步骤。5分钟预告
来见见蜘蛛侠,一个对代数表达式有兴趣的古怪生物!作为蜘蛛侠的养主,你有责任喂养它,让它长成蜘蛛侠的模样。但要小心,蜘蛛龙是一个挑食的人,他喜欢他的食物尽可能简单。利用交换律、分配律和加法和乘法的其他性质,把表达式写成最简单(也是最美味)的形式。5分钟预告
你会收养Spidro, Centeon,还是Ping Bee?它们是三种完全不同的生物,但有一个共同点:渴望简化代数表达式!了解如何使用分配律来组合可变术语,生成有助于您的宠物健康强壮成长的表达式。您将成为识别可以组合的术语的专家-甚至是带有指数和多个变量的术语。经过足够的练习,你和你的宠物将准备好竞争表情吃电路。好运!5分钟预告
mgse9 a.sse——12.。1b:在使用含有多个术语和/或因素的公式或表达式的情况下,解释单个术语或因素的含义(在上下文中)。
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
来见见蜘蛛侠,一个对代数表达式有兴趣的古怪生物!作为蜘蛛侠的养主,你有责任喂养它,让它长成蜘蛛侠的模样。但要小心,蜘蛛龙是一个挑食的人,他喜欢他的食物尽可能简单。利用交换律、分配律和加法和乘法的其他性质,把表达式写成最简单(也是最美味)的形式。5分钟预告
你会收养Spidro, Centeon,还是Ping Bee?它们是三种完全不同的生物,但有一个共同点:渴望简化代数表达式!了解如何使用分配律来组合可变术语,生成有助于您的宠物健康强壮成长的表达式。您将成为识别可以组合的术语的专家-甚至是带有指数和多个变量的术语。经过足够的练习,你和你的宠物将准备好竞争表情吃电路。好运!5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
将代数表达式翻译成英语短语,并将英语短语翻译成代数表达式。阅读表达式或短语并选择单词瓦格或符号瓦格以形成相应的短语或短语。5分钟预告
mgse9 - 12. a。CED::创建方程式
mgse9 - 12. -交流。1:在一个变量中创建方程和不等式,并用它们来解决问题。包括由线性函数和指数函数产生的方程(仅限整数输入)。
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。5分钟预告
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
解决一个变量的不等式。检查数轴上的不等式,并确定哪些点是不等式的解。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。5分钟预告
用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。5分钟预告
用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。5分钟预告
利用二次不等式的图求其解集。改变不等号和不等号符号的术语。检查边界曲线和阴影区域如何响应变化。5分钟预告
用数轴上的动态箭头解一个包含小数的方程。5分钟预告
解决一个变量的一步不等式。把解画在数轴上。5分钟预告
选择正确的步骤来解一个两步方程。使用反馈来诊断不正确的步骤。5分钟预告
把方程式翻译成英文句子,再把英文句子翻译成方程式。阅读方程式或句子,选择单词或符号方块组成相应的句子或方程式。5分钟预告
mgse9 - 12. -交流。2:在两个或多个变量中创建线性和指数方程,以表示数量之间的关系;用标尺和标尺在坐标轴上画出方程。
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。5分钟预告
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。5分钟预告
用数轴上的动态箭头解一个包含小数的方程。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
把方程式翻译成英文句子,再把英文句子翻译成方程式。阅读方程式或句子,选择单词或符号方块组成相应的句子或方程式。5分钟预告
mgse9 - 12. -交流。3:用方程或不等式,以及方程和/或不等式的系统来表示约束,并解释数据点在既定约束下是可能的(即一个解)还是不可能的(即一个非解)。
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。5分钟预告
利用可行域图求目标函数的最大值或最小值。改变目标函数的系数,改变约束条件。探索可行域的图是如何响应变化的。5分钟预告
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
将线性不等式系统与其图进行比较。改变系统中的系数和不等式符号,并探索边界线、阴影区域和阴影区域的交集如何响应变化。5分钟预告
mgse9 - 12. -交流。4:重新排列公式,用与解方程相同的推理来突出感兴趣的量。
使用动态三角形来探索三角形的区域。在动画的帮助下,看到任何三角形总是平行四边形的一半(具有相同的底和高)。同样,一个类似的动画显示了平行四边形和矩形之间的联系。5分钟预告
选择正确的步骤来求解给定变量的公式。使用反馈来诊断不正确的步骤。5分钟预告
mgse9 - 12. a。用方程和不等式进行推理
mgse9 a.rei——12.。1:利用代数性质和实数性质,证明一个简单的一解方程的步骤。学生应该证明他们自己的步骤,或者如果给出一个方程的两个或更多步骤,用性质解释从一个步骤到下一个步骤的进展。
用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。5分钟预告
用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。5分钟预告
解方程难吗?如果你知道如何分离一个变量,你就成功了一半。另一半呢?不要做任何破坏等式平衡的事情。加入我们勇敢的变量朋友,当他遇到代数方程和一个(有时暴躁的)等号。稍加练习,你会发现解方程一点也不棘手。5分钟预告
用数轴上的动态箭头解一个包含小数的方程。5分钟预告
选择正确的步骤来求解给定变量的公式。使用反馈来诊断不正确的步骤。5分钟预告
选择正确的步骤来解一个两步方程。使用反馈来诊断不正确的步骤。5分钟预告
mgse9 a.rei——12.。3:求解一个变量的线性方程和不等式,包括用字母表示系数的方程。
使用动态三角形来探索三角形的区域。在动画的帮助下,看到任何三角形总是平行四边形的一半(具有相同的底和高)。同样,一个类似的动画显示了平行四边形和矩形之间的联系。5分钟预告
探索两个不等式的图形,找到它们的并集或交点。确定不等式的端点和复合不等式的端点之间的关系。5分钟预告
解决一个变量的不等式。检查数轴上的不等式,并确定哪些点是不等式的解。5分钟预告
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。5分钟预告
用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。5分钟预告
用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。5分钟预告
有没有时候你希望自己能逃离所有人,只是一个人呆着?来见见我们的变量朋友,一个真正的孤独者,他不喜欢系数和相邻项。学习如何使用逆来分离变量-解决代数方程的基本技能。5分钟预告
解方程难吗?如果你知道如何分离一个变量,你就成功了一半。另一半呢?不要做任何破坏等式平衡的事情。加入我们勇敢的变量朋友,当他遇到代数方程和一个(有时暴躁的)等号。稍加练习,你会发现解方程一点也不棘手。5分钟预告
用数轴上的动态箭头解一个包含小数的方程。5分钟预告
选择正确的步骤来求解给定变量的公式。使用反馈来诊断不正确的步骤。5分钟预告
解决一个变量的一步不等式。把解画在数轴上。5分钟预告
选择正确的步骤来解一个两步方程。使用反馈来诊断不正确的步骤。5分钟预告
mgse9 a.rei——12.。第5章:展示并解释为什么消元法可以解决一个双变量方程组。
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。5分钟预告
用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
(x,y)点是一个方程的解,或两个方程组的解。5分钟预告
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
mgse9 a.rei——12.。6:精确地和近似地求解线性方程组(例如,用图形),重点是两个变量的线性方程对。
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x,y)指向一个方程或方程组的解。5分钟预告
用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
(x,y)点是一个方程的解,或两个方程组的解。5分钟预告
mgse9 a.rei——12.。10:理解双变量方程的图是其所有解在坐标平面上的集合
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。5分钟预告
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。5分钟预告
将椭圆的方程与其图形进行比较。改变椭圆方程的项,并检查图形如何响应变化。拖动顶点和焦点,探索它们的勾股定理关系,并发现string属性。5分钟预告
将双曲线方程与其图形进行比较。改变双曲线方程的项。检查双曲线及其渐近线的图形如何响应变化。5分钟预告
探索抛物线在一个圆锥截面上下文中。找出抛物线的顶点、焦点和准线之间的关系,以及它们与方程之间的关系。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
mgse9 a.rei——12.。11:使用图、表或连续逼近,表明方程f(x) = g(x)的解是f(x)和g(x)的y值相同的x值。
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。5分钟预告
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索抛物线在一个圆锥截面上下文中。找出抛物线的顶点、焦点和准线之间的关系,以及它们与方程之间的关系。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。5分钟预告
用数轴上的动态箭头解一个包含小数的方程。5分钟预告
探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x,y)指向一个方程或方程组的解。5分钟预告
用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
(x,y)点是一个方程的解,或两个方程组的解。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
mgse9 a.rei——12.。12:将解集画成双变量线性不等式。
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。5分钟预告
利用可行域图求目标函数的最大值或最小值。改变目标函数的系数,改变约束条件。探索可行域的图是如何响应变化的。5分钟预告
将线性不等式系统与其图进行比较。改变系统中的系数和不等式符号,并探索边界线、阴影区域和阴影区域的交集如何响应变化。5分钟预告
mgse9 - 12. f。IF::口译功能
mgse9 f.if——12.。1::理解一个函数从一个集合(输入,称为域)到另一个集合(输出,称为范围)给域的每个元素分配一个范围的元素,即每个输入值映射到一个输出值。如果f是一个函数,x是输入(定义域的一个元素),f(x)是输出(值域的一个元素)。图形上,图像是y = f(x)
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
使用映射图、有序对或关系图确定关系是否是函数。将箭头从域拖到范围,键入有序的对,或将点拖到图中,以便向关系添加输入和输出。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
探索抛物线在一个圆锥截面上下文中。找出抛物线的顶点、焦点和准线之间的关系,以及它们与方程之间的关系。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
mgse9 f.if——12.。2:使用函数表示法,在其域中计算输入函数,并根据上下文解释使用函数表示法的语句。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
mgse9 f.if——12.。3:认识到序列是函数,有时递归定义,其域是整数的子集。(一般来说,高中数学的范围将这个子集定义为自然数1、2、3、4……的集合)通过绘制图表或计算项,学生应该能够展示如何递归顺序a₁ϗ, a₁ₙϚₙ₋+2;序列sₙ= 2(n -1) + 7;和函数f(x) = 2x + 5(当x是自然数时)都定义了相同的序列。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
mgse9 f.if——12.。4:使用表格,图表和口头描述,解释一个函数的关键特征,它在两个量之间的关系建模。绘制一个图表,显示主要特征,包括:拦截;函数递增、递减、正或负的区间;结束的行为。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
将有理函数的方程与其图进行比较。分子和分母乘以或除以线性因子,并探索图形如何响应变化。5分钟预告
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
mgse9 f.if——12.。5:将函数的定义域与其图联系起来,并在适用的情况下与它所描述的定量关系联系起来。
将有理函数的方程与其图进行比较。分子和分母乘以或除以线性因子,并探索图形如何响应变化。5分钟预告
使用映射图、有序对或关系图确定关系是否是函数。将箭头从域拖到范围,键入有序的对,或将点拖到图中,以便向关系添加输入和输出。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
将有理函数的图与其方程作比较。改变方程的项,并探索图形是如何被平移和拉伸的。在数轴上检查定义域,并将其与方程的图形进行比较。5分钟预告
mgse9 f.if——12.。6:计算和解释一个函数(以符号形式或表格形式表示)在指定时间间隔内的平均变化率。从图表中估计变化率。
创建一个跑步者位置与时间的图表,并观察跑步者完成40码冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
创建一个跑步者的位置与时间的图表,并观察跑步者根据你所做的图表跑40码。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
mgse9 f.if——12.。7a::绘制线性函数并显示截距、最大值和最小值(由函数或上下文决定)。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
创建一个多项式作为线性因子的乘积。改变线性因子中的值,看看它们与函数根的关系。5分钟预告
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。5分钟预告
mgse9 f.if——12.。7e::图形指数函数,显示拦截和结束行为。
将余弦函数图与单位圆上的夹角图作比较。沿着余弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
改变对数函数方程中的值,并检查图形是如何转换或缩放的。将这些变换与函数的定义域,以及图中的渐近线联系起来。5分钟预告
将正弦函数图与单位圆上的夹角图作比较。沿着正弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
将正切函数图与单位圆上的夹角图进行比较。沿着切线拖动一点,在单位圆上看到对应的角度。5分钟预告
用正弦或余弦函数的图形做实验。探索如何改变方程中的值可以平移或缩放函数的图形。5分钟预告
mgse9 - 12. f。建筑功能
mgse9 f.bf——12.。1a:根据上下文确定显式表达式和递归过程(计算步骤)。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
mgse9 f.bf——12.。2:递归和显式地编写算术和几何序列,用它们来建模情况,并在两种形式之间转换。将等差数列连接到线性函数,将几何数列连接到指数函数。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
mgse9 f.bf——12.。3::识别用f(x) + k, k, f(x), f(kx),和f(x + k)替换f(x)对特定值k(正负)的影响;求给定图的k的值。用案例进行实验,并使用技术说明对图的影响的解释。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
改变对数函数方程中的值,并检查图形是如何转换或缩放的。将这些变换与函数的定义域,以及图中的渐近线联系起来。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
将有理函数的图与其方程作比较。改变方程的项,并探索图形是如何被平移和拉伸的。在数轴上检查定义域,并将其与方程的图形进行比较。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
用正弦或余弦函数的图形做实验。探索如何改变方程中的值可以平移或缩放函数的图形。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。5分钟预告
mgse9 - 12. f。线性,二次和指数模型
mgse9 f.le——12.。1b:认识到一个量相对于另一个量在单位间隔内以恒定速率变化的情况。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
创建一个跑步者位置与时间的图表,并观察跑步者完成40码冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
创建一个跑步者的位置与时间的图表,并观察跑步者根据你所做的图表跑40码。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
mgse9 f.le——12.。1c:识别一个数量相对于另一个数量在单位间隔内以恒定的百分比速率增长或衰减的情况
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
mgse9 f.le——12.。2:构造线性和指数函数,包括等差和几何序列,给定一个图,一个关系的描述,或两个输入-输出对(包括从表中读取这些)。
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
mgse9 f.le——12.。3:用图表来观察一个指数增长的量最终会超过线性增长的量。
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
mgse9 f.le——12.。5:根据上下文解释线性(f(x) = mx + b)和指数(f(x) = a*dx)函数中的参数。(在上述函数中,“m”和“b”是线性函数的参数,“a”和“d”是指数函数的参数)在上下文中,学生应该描述这些参数在变化和起始值方面的含义。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
mgse9 - 12. g。CO:一致性
mgse9 g.co——12.。1:知道角,圆,垂线,平行线,线段的精确定义,基于未定义的概念点,线,沿线的距离,圆弧的距离。
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。5分钟预告
用直尺和圆规构造相等的段和角。使用循序渐进的解释和反馈来加深对结构的理解。5分钟预告
用直尺和圆规画出平行线和垂线。使用循序渐进的解释和反馈来加深对结构的理解。5分钟预告
mgse9 g.co——12.。2::表示转换在平面上使用,例如,透明度和几何软件;将转换描述为将平面上的点作为输入,并将其他点作为输出的函数。比较保留距离和角度的转换和不保留的转换(例如,平移和水平拉伸)。
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
重塑和调整一个图形的大小,并检查它的反射是如何变化的。移动反射线,探索反射是如何转换的。5分钟预告
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
mgse9 g.co——12.。4:发展旋转,反射的定义,和翻译方面的角度,圆,垂线,平行线,和线段。
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
重塑和调整一个图形的大小,并检查它的反射是如何变化的。移动反射线,探索反射是如何转换的。5分钟预告
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
mgse9 g.co——12.。5:给定一个几何图形和一个旋转,反射,或平移,绘制转换后的图形使用,例如,绘图纸,描图纸,或几何软件。指定将给定图形转移到另一个图形上的转换序列。
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
重塑和调整一个图形的大小,并检查它的反射是如何变化的。移动反射线,探索反射是如何转换的。5分钟预告
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
mgse9 - 12. g。用方程表示几何性质
mgse9 g.gpe——12.。7:使用坐标来计算多边形的周长和三角形和矩形的面积,例如,使用距离公式。
探索距离公式作为毕达哥拉斯定理的应用。学会把任意两点看作直角三角形斜边的端点。拖动这些点并检查三角形和距离计算的变化。5分钟预告
mgse9 - 12.。ID:解释分类和定量数据
mgse9 s.id——12.。1:用实数线上的图(点图、直方图和盒图)表示数据。
构造一个盒须图来匹配线状图,并构造一个线状图来匹配盒须图。操作线形图并检查盒须图如何变化。然后操作盒须图并检查线形图如何变化。5分钟预告
更改数据集中的值,并检查动态直方图如何响应变化。调整直方图的间隔大小,并查看直方图的形状如何受到影响。5分钟预告
建立一个数据集并找到平均值、中位数和众数。探索以跷跷板上的青蛙、秤上的青蛙和堆叠在可变高度杆下的青蛙为例说明的平均值、中位数和模式。5分钟预告
mgse9 s.id——12.。2:使用适合于数据分布形状的统计数据来比较两个或多个不同数据集的中心(中位数,平均值)和扩散(四分位范围,平均绝对偏差)。
构造一个盒须图来匹配线状图,并构造一个线状图来匹配盒须图。操作线形图并检查盒须图如何变化。然后操作盒须图并检查线形图如何变化。5分钟预告
通过图来研究数据集的平均值、中位数、模态和范围。操作数据并观察平均值、中位数、模式和范围如何变化(或者在某些情况下,如何保持不变)。5分钟预告
建立一个数据集并找到平均值、中位数和众数。探索以跷跷板上的青蛙、秤上的青蛙和堆叠在可变高度杆下的青蛙为例说明的平均值、中位数和模式。5分钟预告
对一个大城市的居民进行民意调查,以确定他们对“是”或“否”问题的反应。估计全城投赞成票的实际比例。检查许多民意调查的结果,以帮助评估单个民意调查结果的可靠性。看看对于足够大的民意调查,正态曲线是如何逼近二项分布的。5分钟预告
比较从总体分布中抽取的样本分布。基于样本分布预测总体分布的特征,并检查一个小样本如何代表给定的总体。5分钟预告
通过抓住掉落的尺子或点击目标来测试你的反应时间。创建一个实验结果的数据集,并计算数据的范围、模式、中位数和平均值。数据可以显示在列表、表格、柱状图或点阵图上。反应时间1学生探索的重点是范围,模式和中位数。5分钟预告
试着每2秒点击一次鼠标。记录每次点击之间的时间间隔,以及误差和百分比误差。数据可以以表格、直方图或散点图的形式显示。当收集大量数据时,观察和测量结果分布的特征。5分钟预告
当视觉或听觉刺激出现时,通过尽可能快地点击鼠标来测量你的反应时间。记录单个响应时间,以及每个测试的平均值和标准偏差。数据的直方图显示了视觉和声音响应时间的总体趋势。测试的类型以及使用的符号和声音由用户选择。5分钟预告
mgse9 s.id——12.。3:在数据集上下文中解释形状、中心和分布的差异,解释极端数据点(异常值)的可能影响。
建立一个数据集并找到平均值、中位数和众数。探索以跷跷板上的青蛙、秤上的青蛙和堆叠在可变高度杆下的青蛙为例说明的平均值、中位数和模式。5分钟预告
通过抓住掉落的尺子或点击目标来测试你的反应时间。创建一个实验结果的数据集,并计算数据的范围、模式、中位数和平均值。数据可以显示在列表、表格、柱状图或点阵图上。反应时间2学生探索的重点是平均。5分钟预告
mgse9 s.id——12.。6c::使用给定的或收集的二元数据,拟合一个线性函数的散点图,表明线性关联。
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。5分钟预告
用你自己的判断为散点图中的数据拟合一条线。然后比较最佳拟合的最小二乘线。5分钟预告
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。5分钟预告
检查具有负相关或正相关的随机数据集的散点图。改变相关性并探索相关性如何反映在散点图和趋势线中。5分钟预告
mgse9 s.id——12.。7:在数据的背景下解释线性模型的斜率(变化率)和截距(常数项)。
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
mgse9 s.id——12.。8:计算(使用技术)并解释线性拟合的相关系数“r”。(例如,通过查看散点图,学生应该能够判断相关系数是正的还是负的,并对“r”值给出合理的估计。)在使用技术计算出最佳拟合线后,学生应该能够使用“r”来描述回归的拟合优度有多强。
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。5分钟预告