这种相关性列出了该州课程标准推荐的小发明。点击下面的任何Gizmo标题了解更多信息。
mgse9 - 12. a。SSE:在表达式中看到结构
mgse9 a.sse——12.。1a:根据上下文解释表达式的部分内容,如术语、因子和系数。
复利
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。 5分钟预告
激进表达式操作
确定使用激进表达式完成操作的正确步骤。使用逐步反馈来诊断不正确的步骤。 5分钟预告
代数表达式的化简
来见见蜘蛛侠,一个对代数表达式有兴趣的古怪生物!作为蜘蛛侠的养主,你有责任喂养它,让它长成蜘蛛侠的模样。但要小心,蜘蛛龙是一个挑食的人,他喜欢他的食物尽可能简单。利用交换律、分配律和加法和乘法的其他性质,把表达式写成最简单(也是最美味)的形式。 5分钟预告
简化代数表达式2
你会收养Spidro, Centeon,还是Ping Bee?它们是三种完全不同的生物,但有一个共同点:渴望简化代数表达式!了解如何使用分配律来组合可变术语,生成有助于您的宠物健康强壮成长的表达式。您将成为识别可以组合的术语的专家-甚至是带有指数和多个变量的术语。经过足够的练习,你和你的宠物将准备好竞争表情吃电路。好运! 5分钟预告
mgse9 a.sse——12.。1b:在使用含有多个术语和/或因素的公式或表达式的情况下,解释单个术语或因素的含义(在上下文中)。
复利
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。 5分钟预告
代数表达式的化简
来见见蜘蛛侠,一个对代数表达式有兴趣的古怪生物!作为蜘蛛侠的养主,你有责任喂养它,让它长成蜘蛛侠的模样。但要小心,蜘蛛龙是一个挑食的人,他喜欢他的食物尽可能简单。利用交换律、分配律和加法和乘法的其他性质,把表达式写成最简单(也是最美味)的形式。 5分钟预告
简化代数表达式2
你会收养Spidro, Centeon,还是Ping Bee?它们是三种完全不同的生物,但有一个共同点:渴望简化代数表达式!了解如何使用分配律来组合可变术语,生成有助于您的宠物健康强壮成长的表达式。您将成为识别可以组合的术语的专家-甚至是带有指数和多个变量的术语。经过足够的练习,你和你的宠物将准备好竞争表情吃电路。好运! 5分钟预告
转换和缩放函数
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。 5分钟预告
使用代数表达式
将代数表达式翻译成英语短语,并将英语短语翻译成代数表达式。阅读表达式或短语并选择单词瓦格或符号瓦格以形成相应的短语或短语。 5分钟预告
mgse9 a.sse——12.。2: : Use the structure of an expression to rewrite it in different equivalent forms.
指数表达式的除法
选择正确的步骤来划分指数表达式。使用反馈来诊断不正确的步骤。 5分钟预告
等价代数表达式
不爽餐厅正在招人!作为这家水下小酒馆的新厨师,你将学习操作代数表达式的基本知识。学习如何使用交换性和结合性属性生成等价表达式,如何处理讨厌的减法和除法,以及如何识别等价和非等价表达式。 5分钟预告
等价代数表达式2
在这篇等价代数表达式i的后续文章中,继续你在海底烹饪世界的迅速崛起,通过向前和反向使用分配律来制作等价表达式,根据等价对表达式进行排序,并亲自协助暴躁厨师自己进行一个将给他(也许还有你)带来名利的项目。 5分钟预告
指数和幂规则
选择正确的步骤,使用指数和幂的规则来简化带有指数的表达式。使用反馈来诊断不正确的步骤。 5分钟预告
保理特殊产品
选择正确的步骤来分解包含完全平方二项式、平方之差或常数因子的多项式。使用反馈来诊断不正确的步骤。 5分钟预告
的分解建模斧头 2 +bx +c
用面积模型分解先导系数大于1的多项式。使用逐步反馈来诊断任何错误。 5分钟预告
的分解建模x 2 +bx +c
用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。 5分钟预告
指数乘法表达式
选择正确的步骤来乘指数表达式。使用反馈来诊断不正确的步骤。 5分钟预告
代数表达式的化简
来见见蜘蛛侠,一个对代数表达式有兴趣的古怪生物!作为蜘蛛侠的养主,你有责任喂养它,让它长成蜘蛛侠的模样。但要小心,蜘蛛龙是一个挑食的人,他喜欢他的食物尽可能简单。利用交换律、分配律和加法和乘法的其他性质,把表达式写成最简单(也是最美味)的形式。 5分钟预告
简化代数表达式2
你会收养Spidro, Centeon,还是Ping Bee?它们是三种完全不同的生物,但有一个共同点:渴望简化代数表达式!了解如何使用分配律来组合可变术语,生成有助于您的宠物健康强壮成长的表达式。您将成为识别可以组合的术语的专家-甚至是带有指数和多个变量的术语。经过足够的练习,你和你的宠物将准备好竞争表情吃电路。好运! 5分钟预告
三角函数的化简
选择正确的步骤来简化一个三角函数。使用逐步反馈来诊断不正确的步骤。 5分钟预告
解代数方程2
解方程难吗?如果你知道如何分离一个变量,你就成功了一半。另一半呢?不要做任何破坏等式平衡的事情。加入我们勇敢的变量朋友,当他遇到代数方程和一个(有时暴躁的)等号。稍加练习,你会发现解方程一点也不棘手。 5分钟预告
使用代数表达式
将代数表达式翻译成英语短语,并将英语短语翻译成代数表达式。阅读表达式或短语并选择单词瓦格或符号瓦格以形成相应的短语或短语。 5分钟预告
mgse9 a.sse——12.。3a::分解任何二次表达式以显示由表达式定义的函数的零点。
保理特殊产品
选择正确的步骤来分解包含完全平方二项式、平方之差或常数因子的多项式。使用反馈来诊断不正确的步骤。 5分钟预告
的分解建模斧头 2 +bx +c
用面积模型分解先导系数大于1的多项式。使用逐步反馈来诊断任何错误。 5分钟预告
的分解建模x 2 +bx +c
用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。 5分钟预告
因式二次方程
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。 5分钟预告
mgse9 a.sse——12.。3b:在二次表达式中完成平方,以显示表达式所定义的函数的最大值和最小值。
顶点形式的二次方程
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。 5分钟预告
mgse9 - 12. a。APR::多项式和有理表达式的算术
mgse9 a.apr——12.。1::加法,减法,多项式相乘;要明白多项式形成了一个类似于整数的系统,因为它们在这些操作下是封闭的。
函数的加减法
探索两个多项式的图以及它们的和或差的图。改变多项式中的系数,并研究图形如何响应变化。 5分钟预告
多项式的加法
使用面积模型添加多项式。使用逐步反馈来诊断任何错误。 5分钟预告
的分解建模x 2 +bx +c
用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。 5分钟预告
mgse9 - 12. a。CED::创建方程式
mgse9 - 12. -交流。1:在一个变量中创建方程和不等式,并用它们来解决问题。包括二次函数的方程。
绝对值方程与不等式
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。 5分钟预告
算术序列
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。 5分钟预告
复利
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。 5分钟预告
探讨单变量线性不等式
解决一个变量的不等式。检查数轴上的不等式,并确定哪些点是不等式的解。 5分钟预告
几何序列
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。 5分钟预告
二元线性不等式
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。 5分钟预告
一步方程建模
用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。 5分钟预告
建模与求解两步方程
用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。 5分钟预告
二次不等式
利用二次不等式的图求其解集。改变不等号和不等号符号的术语。检查边界曲线和阴影区域如何响应变化。 5分钟预告
在数轴上解方程
用数轴上的动态箭头解一个包含小数的方程。 5分钟预告
求解单变量线性不等式
解决一个变量的一步不等式。把解画在数轴上。 5分钟预告
求解两步方程
选择正确的步骤来解一个两步方程。使用反馈来诊断不正确的步骤。 5分钟预告
使用代数方程
把方程式翻译成英文句子,再把英文句子翻译成方程式。阅读方程式或句子,选择单词或符号方块组成相应的句子或方程式。 5分钟预告
mgse9 - 12. -交流。2: : Create quadratic equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. (The phrase “in two or more variables” refers to formulas like the compound interest formula, in which A = P(1 + r/n)nt has multiple variables.)
绝对值方程与不等式
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。 5分钟预告
圈
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。 5分钟预告
复利
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。 5分钟预告
线性函数
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。 5分钟预告
直线的点斜式
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。 5分钟预告
点,线和方程
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。 5分钟预告
多项式形式的二次方程
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。 5分钟预告
顶点形式的二次方程
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。 5分钟预告
直线的斜截式
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。 5分钟预告
在数轴上解方程
用数轴上的动态箭头解一个包含小数的方程。 5分钟预告
直线的标准形式
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。 5分钟预告
使用代数方程
把方程式翻译成英文句子,再把英文句子翻译成方程式。阅读方程式或句子,选择单词或符号方块组成相应的句子或方程式。 5分钟预告
mgse9 - 12. -交流。4:重新排列公式,用与解方程相同的推理来突出感兴趣的量。
三角形面积
使用动态三角形来探索三角形的区域。在动画的帮助下,看到任何三角形总是平行四边形的一半(具有相同的底和高)。同样,一个类似的动画显示了平行四边形和矩形之间的联系。 5分钟预告
求解任意变量的公式
选择正确的步骤来求解给定变量的公式。使用反馈来诊断不正确的步骤。 5分钟预告
mgse9 - 12. a。用方程和不等式进行推理
mgse9 a.rei——12.。4a::利用平方补全的方法,将x中的任意二次方程转化为(x - p)²= q形式的方程,且具有相同的解。由ax²+ bx + c = 0推导出二次公式。
二次的根
利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。 5分钟预告
mgse9 a.rei——12.。4b:通过检查(例如,对于x²= 49)求解二次方程,取平方根,因式分解,补全平方,以及二次公式,视方程的初始形式而定(仅限于实数解)。
保理特殊产品
选择正确的步骤来分解包含完全平方二项式、平方之差或常数因子的多项式。使用反馈来诊断不正确的步骤。 5分钟预告
的分解建模斧头 2 +bx +c
用面积模型分解先导系数大于1的多项式。使用逐步反馈来诊断任何错误。 5分钟预告
的分解建模x 2 +bx +c
用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。 5分钟预告
复平面上的点
确定复平面上一点的虚坐标和实坐标。在平面上拖动点,并研究坐标如何相应变化。 5分钟预告
二次的根
利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。 5分钟预告
mgse9 - 12. f。IF::口译功能
mgse9 f.if——12.。4:使用表格,图表和口头描述,解释一个函数的关键特征,它在两个量之间的关系建模。绘制一个图表,显示主要特征,包括:拦截;函数递增、递减、正或负的区间;相对最大值和最小值;对称性;结束的行为。
线性函数的绝对值
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。 5分钟预告
猫和老鼠(线性系统建模)
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。 5分钟预告
指数函数
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。 5分钟预告
函数机器3(函数和问题解决)
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。 5分钟预告
有理函数的一般形式
将有理函数的方程与其图进行比较。分子和分母乘以或除以线性因子,并探索图形如何响应变化。 5分钟预告
多项式函数图
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。 5分钟预告
指数函数概论
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。 5分钟预告
线性函数
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。 5分钟预告
对数函数
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y =x 比较相关的指数函数。 5分钟预告
点,线和方程
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。 5分钟预告
因式二次方程
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。 5分钟预告
多项式形式的二次方程
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。 5分钟预告
顶点形式的二次方程
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。 5分钟预告
激进的功能
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。 5分钟预告
直线的斜截式
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。 5分钟预告
mgse9 f.if——12.。5:将函数的定义域与其图联系起来,并在适用的情况下与它所描述的定量关系联系起来。
有理函数的一般形式
将有理函数的方程与其图进行比较。分子和分母乘以或除以线性因子,并探索图形如何响应变化。 5分钟预告
函数简介
使用映射图、有序对或关系图确定关系是否是函数。将箭头从域拖到范围,键入有序的对,或将点拖到图中,以便向关系添加输入和输出。 5分钟预告
激进的功能
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。 5分钟预告
理性的功能
将有理函数的图与其方程作比较。改变方程的项,并探索图形是如何被平移和拉伸的。在数轴上检查定义域,并将其与方程的图形进行比较。 5分钟预告
mgse9 f.if——12.。6:计算和解释一个函数(以符号形式或表格形式表示)在指定时间间隔内的平均变化率。从图表中估计变化率。
距离图
创建一个跑步者位置与时间的图表,并观察跑步者完成40码冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。 5分钟预告
距离-时间和速度-时间图
创建一个跑步者的位置与时间的图表,并观察跑步者根据你所做的图表跑40码。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。 5分钟预告
mgse9 f.if——12.。7a::绘制二次函数并显示截距、最大值和最小值(由函数或上下文决定)。
线性函数的绝对值
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。 5分钟预告
指数函数
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。 5分钟预告
多项式函数图
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。 5分钟预告
线性函数
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。 5分钟预告
直线的点斜式
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。 5分钟预告
点,线和方程
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。 5分钟预告
多项式和线性因子
创建一个多项式作为线性因子的乘积。改变线性因子中的值,看看它们与函数根的关系。 5分钟预告
因式二次方程
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。 5分钟预告
多项式形式的二次方程
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。 5分钟预告
顶点形式的二次方程
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。 5分钟预告
二次的根
利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。 5分钟预告
直线的斜截式
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。 5分钟预告
直线的标准形式
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。 5分钟预告
杀死它!游戏
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。 5分钟预告
mgse9 f.if——12.。8a:在二次函数中使用因式分解和补全平方的过程来显示零、极值和图的对称性,并根据上下文解释这些。
保理特殊产品
选择正确的步骤来分解包含完全平方二项式、平方之差或常数因子的多项式。使用反馈来诊断不正确的步骤。 5分钟预告
的分解建模斧头 2 +bx +c
用面积模型分解先导系数大于1的多项式。使用逐步反馈来诊断任何错误。 5分钟预告
的分解建模x 2 +bx +c
用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。 5分钟预告
mgse9 - 12. f。建筑功能
mgse9 f.bf——12.。1a:根据上下文确定显式表达式和递归过程(计算步骤)。
算术序列
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。 5分钟预告
等差数列与几何数列
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。 5分钟预告
几何序列
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。 5分钟预告
mgse9 f.bf——12.。3::识别用f(x) + k, k, f(x), f(kx),和f(x + k)替换f(x)对特定值k(正负)的影响;求给定图的k的值。用案例进行实验,并使用技术说明对图的影响的解释。包括从图和代数表达式中识别偶函数和奇函数。
线性函数的绝对值
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。 5分钟预告
指数函数
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。 5分钟预告
指数函数概论
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。 5分钟预告
对数函数
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y =x 比较相关的指数函数。 5分钟预告
对数函数:转换和缩放
改变对数函数方程中的值,并检查图形是如何转换或缩放的。将这些变换与函数的定义域,以及图中的渐近线联系起来。 5分钟预告
顶点形式的二次方程
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。 5分钟预告
激进的功能
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。 5分钟预告
理性的功能
将有理函数的图与其方程作比较。改变方程的项,并探索图形是如何被平移和拉伸的。在数轴上检查定义域,并将其与方程的图形进行比较。 5分钟预告
转换和缩放函数
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。 5分钟预告
转换和缩放正弦和余弦函数
用正弦或余弦函数的图形做实验。探索如何改变方程中的值可以平移或缩放函数的图形。 5分钟预告
翻译
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。 5分钟预告
杀死它!游戏
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。 5分钟预告
mgse9 - 12. g。CO:一致性
mgse9 g.co——12.。6:使用刚性运动的几何描述来变换图形,并预测给定刚性运动对给定图形的影响;给定两个图形,用刚体运动中同余的定义来判断它们是否同余。
证明三角形相等
对两个三角形应用约束。然后拖动三角形的顶点,并确定哪些约束可以保证一致性。 5分钟预告
反射
重塑和调整一个图形的大小,并检查它的反射是如何变化的。移动反射线,探索反射是如何转换的。 5分钟预告
旋转、反射和平移
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。 5分钟预告
翻译
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。 5分钟预告
mgse9 g.co——12.。第8题:解释三角形同余的标准(ASA, SAS和SSS)是如何从刚性运动的同余定义中遵循的。(扩展到包括HL和AAS)
证明三角形相等
对两个三角形应用约束。然后拖动三角形的顶点,并确定哪些约束可以保证一致性。 5分钟预告
mgse9 g.co——12.。9:证明关于直线和角的定理。
研究角度定理
利用动态图形探索互补角、互补角、垂直角和邻角的性质。 5分钟预告
mgse9 g.co——12.。10:证明关于三角形的定理。
勾股定理
用动态直角三角形探索勾股定理。利用三角形边长正方形的面积,研究毕达哥拉斯定理的一个直观的几何应用。 5分钟预告
三角形角和
测量三角形的内角并求出它们的和。检查是否所有三角形的和都是一样的。此外,还将了解外角的测量与内角测量的关系。 5分钟预告
三角不等式
发现与三角形边长和角度度量相关的不等式。重塑并调整三角形大小,以确认这些属性对所有三角形都是正确的。 5分钟预告
mgse9 g.co——12.。11:证明关于平行四边形的定理。
平行四边形的条件
对动态四边形应用约束。然后拖动它的顶点。确定哪些约束条件保证四边形始终是平行四边形。 5分钟预告
特殊的平行四边形
对平行四边形施加约束,并对得到的图形进行实验。在每种条件下,你能确定自己拥有哪种形状? 5分钟预告
mgse9 g.co——12.。13:构造一个等边三角形、一个正方形和一个正六边形,每一个都嵌在一个圆里。
并行线,中位数和高度
使用可以调整大小和重塑的三角形,探索垂直平分线、内界线圆、角平分线、内切圆、高度和中位数之间的关系。 5分钟预告
上角
调整圆弧内夹角的大小。研究圆周角与其截弧之间的关系。 5分钟预告
mgse9 - 12. g。SRT:相似度,直角三角形和三角学
mgse9 g.srt——12.。1a:一条不穿过膨胀中心的线的膨胀会产生一条平行线,并留下一条穿过中心的线不变。
相呼应
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y) 形式和矩阵形式。 5分钟预告
mgse9 g.srt——12.。1b:线段的膨胀根据比例因子给出的比率而变长或变短。
相呼应
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y) 形式和矩阵形式。 5分钟预告
相似的数据
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。 5分钟预告
mgse9 g.srt——12.。2: : Given two figures, use the definition of similarity in terms of similarity transformations to decide if they are similar; explain, using similarity transformations, the meaning of similarity for triangles as the equality of all corresponding pairs of angles and the proportionality of all corresponding pairs of sides.
圈
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。 5分钟预告
相呼应
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y) 形式和矩阵形式。 5分钟预告
相似的数据
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。 5分钟预告
直角三角形的相似性
在斜边的高度上除以一个直角三角形,得到两个相似的直角三角形。探索两个三角形之间的关系。 5分钟预告
mgse9 g.srt——12.。4:证明关于三角形的定理。
勾股定理
用动态直角三角形探索勾股定理。利用三角形边长正方形的面积,研究毕达哥拉斯定理的一个直观的几何应用。 5分钟预告
相似的数据
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。 5分钟预告
mgse9 g.srt——12.。5:使用三角形的同余和相似标准来解决问题,并证明几何图形中的关系。
相呼应
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y) 形式和矩阵形式。 5分钟预告
相似图形的周长和面积
操作两个相似的图形,改变比例因子,看看在相似的情况下可能发生什么变化。探究两个相似图形的周长和面积是如何比较的。 5分钟预告
直角三角形的相似性
在斜边的高度上除以一个直角三角形,得到两个相似的直角三角形。探索两个三角形之间的关系。 5分钟预告
mgse9 g.srt——12.。第6章:根据相似度,直角三角形的边长比是三角形内角的性质,从而得到锐角的三角比的定义。
正弦,余弦和正切比
重塑和调整一个直角三角形,并检查角a的正弦,角a的余弦和角a的正切是如何变化的。 5分钟预告
mgse9 g.srt——12.。8:在实际问题中使用三角比率和勾股定理求解直角三角形。
距离公式
探索距离公式作为毕达哥拉斯定理的应用。学会把任意两点看作直角三角形斜边的端点。拖动这些点并检查三角形和距离计算的变化。 5分钟预告
勾股定理
用动态直角三角形探索勾股定理。利用三角形边长正方形的面积,研究毕达哥拉斯定理的一个直观的几何应用。 5分钟预告
毕达哥拉斯定理与地动板
在交互式地理定位板中构建直角三角形,并在三角形的两侧构建正方形,以发现勾股定理。 5分钟预告
正弦,余弦和正切比
重塑和调整一个直角三角形,并检查角a的正弦,角a的余弦和角a的正切是如何变化的。 5分钟预告
MGSE9-12.G.C::圆
mgse9 g.co——12.。6:使用刚性运动的几何描述来变换图形,并预测给定刚性运动对给定图形的影响;给定两个图形,用刚体运动中同余的定义来判断它们是否同余。
证明三角形相等
对两个三角形应用约束。然后拖动三角形的顶点,并确定哪些约束可以保证一致性。 5分钟预告
反射
重塑和调整一个图形的大小,并检查它的反射是如何变化的。移动反射线,探索反射是如何转换的。 5分钟预告
旋转、反射和平移
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。 5分钟预告
翻译
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。 5分钟预告
mgse9 g.co——12.。第8题:解释三角形同余的标准(ASA, SAS和SSS)是如何从刚性运动的同余定义中遵循的。(扩展到包括HL和AAS)
证明三角形相等
对两个三角形应用约束。然后拖动三角形的顶点,并确定哪些约束可以保证一致性。 5分钟预告
mgse9 g.co——12.。9:证明关于直线和角的定理。
研究角度定理
利用动态图形探索互补角、互补角、垂直角和邻角的性质。 5分钟预告
mgse9 g.co——12.。10:证明关于三角形的定理。
勾股定理
用动态直角三角形探索勾股定理。利用三角形边长正方形的面积,研究毕达哥拉斯定理的一个直观的几何应用。 5分钟预告
三角形角和
测量三角形的内角并求出它们的和。检查是否所有三角形的和都是一样的。此外,还将了解外角的测量与内角测量的关系。 5分钟预告
三角不等式
发现与三角形边长和角度度量相关的不等式。重塑并调整三角形大小,以确认这些属性对所有三角形都是正确的。 5分钟预告
mgse9 g.co——12.。11:证明关于平行四边形的定理。
平行四边形的条件
对动态四边形应用约束。然后拖动它的顶点。确定哪些约束条件保证四边形始终是平行四边形。 5分钟预告
特殊的平行四边形
对平行四边形施加约束,并对得到的图形进行实验。在每种条件下,你能确定自己拥有哪种形状? 5分钟预告
mgse9 g.co——12.。13:构造一个等边三角形、一个正方形和一个正六边形,每一个都嵌在一个圆里。
并行线,中位数和高度
使用可以调整大小和重塑的三角形,探索垂直平分线、内界线圆、角平分线、内切圆、高度和中位数之间的关系。 5分钟预告
上角
调整圆弧内夹角的大小。研究圆周角与其截弧之间的关系。 5分钟预告
mgse9 - 12.里。1:要明白所有的圆都是相似的。
圈
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。 5分钟预告
mgse9 - 12.里。2: : Identify and describe relationships among inscribed angles, radii, chords, tangents, and secants. Include the relationship between central, inscribed, and circumscribed angles; inscribed angles on a diameter are right angles; the radius of a circle is perpendicular to the tangent where the radius intersects the circle.
和弦和弧线
探索圆心角与其截弧之间的关系。同时探索和弦和它们到圆心的距离之间的关系。 5分钟预告
圆的周长和面积
上角
调整圆弧内夹角的大小。研究圆周角与其截弧之间的关系。 5分钟预告
mgse9 - 12.里。5:利用相似度推导出一个角度截弧的长度与半径成正比的事实,并将角度的弧度测量定义为比例常数;推导出扇形面积的公式。
和弦和弧线
探索圆心角与其截弧之间的关系。同时探索和弦和它们到圆心的距离之间的关系。 5分钟预告
mgse9 - 12. g。用方程表示几何性质
mgse9 g.gpe——12.。1:利用毕达哥拉斯定理推导出给定圆心和半径的圆的方程;完成这个正方形,求出由方程给出的圆的圆心和半径。
圈
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。 5分钟预告
距离公式
探索距离公式作为毕达哥拉斯定理的应用。学会把任意两点看作直角三角形斜边的端点。拖动这些点并检查三角形和距离计算的变化。 5分钟预告
勾股定理
用动态直角三角形探索勾股定理。利用三角形边长正方形的面积,研究毕达哥拉斯定理的一个直观的几何应用。 5分钟预告
毕达哥拉斯定理与地动板
在交互式地理定位板中构建直角三角形,并在三角形的两侧构建正方形,以发现勾股定理。 5分钟预告
mgse9 - 12. g。GMD:几何测量和尺寸
mgse9 g.gmd——12.。1a:给出一个圆的周长和面积的公式的非正式参数,使用解剖参数和非正式极限参数。
圆的周长和面积
棱镜和圆柱体
改变棱镜或圆柱体的高度和底边或半径长度,并检查其三维表示如何变化。确定基底的面积和固体的体积。将斜棱镜或圆柱的体积与右棱镜或圆柱的体积进行比较。 5分钟预告
金字塔和锥体
改变金字塔或锥体的高度和底边或半径长度,并检查其三维表示如何变化。确定基底的面积和固体的体积。将倾斜金字塔或锥体的体积与右金字塔或锥体的体积进行比较。 5分钟预告
mgse9 g.gmd——12.。1b:用卡瓦列里原理给出圆柱、金字塔和锥体体积公式的非正式论证。
圆的周长和面积
棱镜和圆柱体
改变棱镜或圆柱体的高度和底边或半径长度,并检查其三维表示如何变化。确定基底的面积和固体的体积。将斜棱镜或圆柱的体积与右棱镜或圆柱的体积进行比较。 5分钟预告
金字塔和锥体
改变金字塔或锥体的高度和底边或半径长度,并检查其三维表示如何变化。确定基底的面积和固体的体积。将倾斜金字塔或锥体的体积与右金字塔或锥体的体积进行比较。 5分钟预告
mgse9 g.gmd——12.。3:使用圆柱体,金字塔,锥体和球体的体积公式来解决问题。
棱镜和圆柱体
改变棱镜或圆柱体的高度和底边或半径长度,并检查其三维表示如何变化。确定基底的面积和固体的体积。将斜棱镜或圆柱的体积与右棱镜或圆柱的体积进行比较。 5分钟预告
金字塔和锥体
改变金字塔或锥体的高度和底边或半径长度,并检查其三维表示如何变化。确定基底的面积和固体的体积。将倾斜金字塔或锥体的体积与右金字塔或锥体的体积进行比较。 5分钟预告
mgse9 - 12.。ID:解释分类和定量数据
mgse9 s.id——12.。6a:通过观察图形化数据、图表化数据或通过分析上下文生成最适合的可行(粗略)函数来决定哪种类型的函数最合适。使用此函数可以在具体环境中解决问题。强调二次模型。
相关
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。 5分钟预告
最小二乘最佳拟合直线
用你自己的判断为散点图中的数据拟合一条线。然后比较最佳拟合的最小二乘线。 5分钟预告
利用趋势线求解
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。 5分钟预告
散点图趋势
检查具有负相关或正相关的随机数据集的散点图。改变相关性并探索相关性如何反映在散点图和趋势线中。 5分钟预告
杀死它!游戏
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。 5分钟预告
mgse9 - 12.。条件概率和概率规则
mgse9 s.cp——12.。1:将事件类别描述为样本空间的子集,使用并集、交集或其他事件的补充(或、和、不是)。
独立和从属事件
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。 5分钟预告
概率模拟
用旋流器进行实验,将特定结果的实验概率与理论概率进行比较。选择旋流器的数量,旋流器上的节数,以及旋流的有利结果。然后统计有利结果的数量。 5分钟预告
理论和实验概率
用旋流器进行实验,将特定结果的实验概率与理论概率进行比较。选择旋流器的数量,旋流器上的节数,以及旋流的有利结果。然后统计有利结果的数量。 5分钟预告
mgse9 s.cp——12.。2: : Understand that if two events A and B are independent, the probability of A and B occurring together is the product of their probabilities, and that if the probability of two events A and B occurring together is the product of their probabilities, the two events are independent.
独立和从属事件
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。 5分钟预告
mgse9 s.cp——12.。3:将A给定B的条件概率理解为P(A和B)/P(B)。用条件概率解释A和B的独立性;也就是说,在B的前提下A的条件概率与A的概率相同,在A的前提下B的条件概率与B的概率相同。
独立和从属事件
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。 5分钟预告
mgse9 s.cp——12.。6:找出A给定B的条件概率,即B的结果中也属于A的部分,并在上下文中解释答案。
独立和从属事件
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。 5分钟预告