C.1: : Properties and States of Matter
C.1.3: : Recognize observable macroscopic indicators of chemical changes.
Chemical Changes
Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter.5 Minute Preview
C.1.6: : Demonstrate an understanding of the law of conservation of mass through the use of particle diagrams and mathematical models.
Chemical Changes
Chemical changes result in the formation of new substances. But how can you tell if a chemical change has occurred? Explore this question by observing and measuring a variety of chemical reactions. Along the way you will learn about chemical equations, acids and bases, exothermic and endothermic reactions, and conservation of matter.5 Minute Preview
Chemical Equations
Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass.5 Minute Preview
C.1.7: : Perform calculations involving density and distinguish among materials based on densities.
Density Experiment: Slice and Dice
Drop a chunk of material in a beaker of water and observe whether it sinks or floats. Cut the chunk into smaller pieces of any size, and observe what happens as they are dropped in the beaker. The mass and volume of each chunk can be measured to gain a clear understanding of density and buoyancy.5 Minute Preview
Density Laboratory
规模来衡量质量,量筒to measure volume, and a large beaker of liquid to observe flotation, the relationship between mass, volume, density, and flotation can be investigated. The density of the liquid in the beaker can be adjusted, and a variety of objects can be studied during the investigation.5 Minute Preview
C.2: : Atomic Structure and the Periodic Table
C.2.1: : Using available experimental data, explain how and why models of atomic structure have changed over time.
Bohr Model of Hydrogen
Shoot a stream of photons through a container of hydrogen gas. Observe how photons of certain energies are absorbed, causing the electron to move to different orbits. Build the spectrum of hydrogen based on photons that are absorbed and emitted.5 Minute Preview
Bohr Model: Introduction
Fire photons to determine the spectrum of a gas. Observe how an absorbed photon changes the orbit of an electron and how a photon is emitted from an excited electron. Calculate the energies of absorbed and emitted photons based on energy level diagrams. The light energy produced by the laser can be modulated, and a lamp can be used to view the entire absorption spectrum at once.5 Minute Preview
C.2.3: : Write the full and noble gas electron configuration of an element, determine its valence electrons, and relate this to its position on the periodic table.
Electron Configuration
Create the electron configuration of any element by filling electron orbitals. Determine the relationship between electron configuration and atomic radius. Discover trends in atomic radii across periods and down families/groups of the periodic table.5 Minute Preview
C.2.4: : Use the periodic table as a model to predict the relative properties of elements based on the pattern of valence electrons and periodic trends.
Electron Configuration
Create the electron configuration of any element by filling electron orbitals. Determine the relationship between electron configuration and atomic radius. Discover trends in atomic radii across periods and down families/groups of the periodic table.5 Minute Preview
C.2.6: : Describe nuclear changes in matter, including fission, fusion, transmutations, and decays.
Nuclear Decay
Observe the five main types of nuclear decay: alpha decay, beta decay, gamma decay, positron emission, and electron capture. Write nuclear equations by determining the mass numbers and atomic numbers of daughter products and emitted particles.5 Minute Preview
C.2.7: : Perform half-life calculations when given the appropriate information about the isotope.
Half-life
Investigate the decay of a radioactive substance. The half-life and the number of radioactive atoms can be adjusted, and theoretical or random decay can be observed. Data can be interpreted visually using a dynamic graph, a bar chart, and a table. Determine the half-lives of two sample isotopes as well as samples with randomly generated half-lives.5 Minute Preview
C.3: : Bonding and Molecular Structure
C.3.2: : Compare and contrast how ionic and covalent compounds form.
Ionic Bonds
Simulate ionic bonds between a variety of metals and nonmetals. Select a metal and a nonmetal atom, and transfer electrons from one to the other. Observe the effect of gaining and losing electrons on charge, and rearrange the atoms to represent the molecular structure. Additional metal and nonmetal atoms can be added to the screen, and the resulting chemical formula can be displayed.5 Minute Preview
C.3.5: : Use laboratory observations and data to compare and contrast ionic, covalent, network, metallic, polar, and non-polar substances with respect to constituent particles, strength of bonds, melting, and boiling points and conductivity; provide examples of each type.
Circuit Builder
Create circuits using batteries, light bulbs, switches, fuses, and a variety of materials. Examine series and parallel circuits, conductors and insulators, and the effects of battery voltage. Thousands of different circuits can be built with this Gizmo.5 Minute Preview
C.4: : Reactions and Stoichiometry
C.4.1: : Describe, classify, and give examples of various kinds of reactions: synthesis (i.e., combination), decomposition, single displacement, double displacement, acid/base, and combustion.
Balancing Chemical Equations
Balance and classify five types of chemical reactions: synthesis, decomposition, single replacement, double replacement, and combustion. While balancing the reactions, the number of atoms on each side is presented as visual, histogram, and numerical data.5 Minute Preview
Chemical Equations
Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass.5 Minute Preview
Dehydration Synthesis
Build a glucose molecule, atom-by-atom, to learn about chemical bonds and the structure of glucose. Explore the processes of dehydration synthesis and hydrolysis in carbohydrate molecules.5 Minute Preview
Equilibrium and Concentration
Observe how reactants and products interact in reversible reactions. The initial amount of each substance can be manipulated, as well as the pressure on the chamber. The amounts, concentrations, and partial pressures of each reactant and product can be tracked over time as the reaction proceeds toward equilibrium.5 Minute Preview
Titration
Measure the quantity of a known solution needed to neutralize an acid or base of unknown concentration. Use this information to calculate the unknown concentration. A variety of indicators can be used to show the pH of the solution.5 Minute Preview
C.4.4: : Apply the mole concept to determine the mass, moles, number of particles, or volume of a gas at STP, in any given sample, for an element or compound.
Chemical Equations
Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass.5 Minute Preview
Limiting Reactants
Explore the concepts of limiting reactants, excess reactants, and theoretical yield in a chemical reaction. Select one of two different reactions, choose the number of molecules of each reactant, and then observe the products created and the reactants left over.5 Minute Preview
Stoichiometry
Solve problems in chemistry using dimensional analysis. Select appropriate tiles so that units in the question are converted into units of the answer. Tiles can be flipped, and answers can be calculated once the appropriate unit conversions have been applied.5 Minute Preview
C.4.5: : Use a balanced chemical equation to calculate the quantities of reactants needed and products made in a chemical reaction that goes to completion.
Chemical Equations
Practice balancing chemical equations by changing the coefficients of reactants and products. As the equation is manipulated, the amount of each element is shown as individual atoms, histograms, or numerically. Molar masses of reactants and products can also be calculated and balanced to demonstrate conservation of mass.5 Minute Preview
Limiting Reactants
Explore the concepts of limiting reactants, excess reactants, and theoretical yield in a chemical reaction. Select one of two different reactions, choose the number of molecules of each reactant, and then observe the products created and the reactants left over.5 Minute Preview
Stoichiometry
Solve problems in chemistry using dimensional analysis. Select appropriate tiles so that units in the question are converted into units of the answer. Tiles can be flipped, and answers can be calculated once the appropriate unit conversions have been applied.5 Minute Preview
C.5: : Behavior of Gases
C.5.1: : Use the kinetic molecular theory with the combined and ideal gas laws to explain changes in volume, pressure, moles, and temperature of a gas.
Temperature and Particle Motion
Observe the movement of particles of an ideal gas at a variety of temperatures. A histogram showing the Maxwell-Boltzmann velocity distribution is shown, and the most probable velocity, mean velocity, and root mean square velocity can be calculated. Molecules of different gases can be compared.5 Minute Preview
C.6: : Thermochemistry
C.6.1: : Explain that atoms and molecules are in constant motion and that this motion increases as thermal energy increases.
Temperature and Particle Motion
Observe the movement of particles of an ideal gas at a variety of temperatures. A histogram showing the Maxwell-Boltzmann velocity distribution is shown, and the most probable velocity, mean velocity, and root mean square velocity can be calculated. Molecules of different gases can be compared.5 Minute Preview
C.6.2: : Distinguish between the concepts of temperature and heat flow in macroscopic and microscopic terms.
Calorimetry Lab
Investigate how calorimetry can be used to find relative specific heat values when different substances are mixed with water. Modify initial mass and temperature values to see effects on the system. One or any combination of the substances can be mixed with water. A dynamic graph (temperature vs. time) shows temperatures of the individual substances after mixing.5 Minute Preview
C.6.4: : Perform calculations involving heat flow, temperature changes, and phase changes by using known values of specific heat, phase change constants, or both.
Calorimetry Lab
Investigate how calorimetry can be used to find relative specific heat values when different substances are mixed with water. Modify initial mass and temperature values to see effects on the system. One or any combination of the substances can be mixed with water. A dynamic graph (temperature vs. time) shows temperatures of the individual substances after mixing.5 Minute Preview
Energy Conversion in a System
A falling cylinder is attached to a rotating propeller that stirs and heats the water in a beaker. The mass and height of the cylinder, as well as the quantity and initial temperature of water can be adjusted. The temperature of the water is measured as energy is converted from one form to another.5 Minute Preview
Phase Changes
Explore the relationship between molecular motion, temperature, and phase changes. Compare the molecular structure of solids, liquids, and gases. Graph temperature changes as ice is melted and water is boiled. Find the effect of altitude on phase changes. The starting temperature, ice volume, altitude, and rate of heating or cooling can be adjusted.5 Minute Preview
C.8: : Acids and Bases
C.8.1: : Classify solutions as acids or bases and describe their characteristic properties.
pH Analysis
Test the acidity of common substances using pH paper. Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of pH strips to a standard scale.5 Minute Preview
pH Analysis: Quad Color Indicator
测试许多日常的酸性物质s using pH paper (four color indicators). Materials including soap, lemon juice, milk, and oven cleaner can be tested by comparing the color of the pH strips to the calibrated scale.5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with20-40 Free Gizmos.See the full list.
Accesslesson materialsfor Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a5 Minute Previewand can only be used for 5 minutes a day.
Free Gizmos change each semester.Thenew collectionwill be available Jul 01, 2023.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote