PII.1: : Energy and Momentum in Two Dimensions
PII.1.1: : For a system consisting of a single object with a net external force applied, qualitatively and quantitatively predict changes in its linear momentum using the impulse-momentum theorem and in its translational kinetic energy using the work-energy theorem.
Inclined Plane - Simple Machine
Investigate how an inclined plane redirects and reduces the force pulling a brick downward, with or without friction. A toy car can apply a variable upward force on the brick, and the mechanical advantage and efficiency of the plane can be determined. A graph of force versus distance illustrates the concept of work.5 Minute Preview
PII.1.2: : For a system consisting of a two objects with no net external forces applied, qualitatively and quantitatively analyze a two dimensional interaction (i.e. collision or separation) to show that the total linear momentum of the system remains constant.
2D Collisions
Investigate elastic collisions in two dimensions using two frictionless pucks. The mass, velocity, and initial position of each puck can be modified to create a variety of scenarios.5 Minute Preview
Air Track
Adjust the mass and velocity of two gliders on a frictionless air track. Measure the velocity, momentum, and kinetic energy of each glider as they approach each other and collide. Collisions can be elastic or inelastic.5 Minute Preview
PII.1.3: : For a system consisting of two objects moving in two dimensions with no net external forces applied, apply the principles of conservation of linear momentum and of mechanical energy to quantitatively predict changes in the linear momentum, velocity, and kinetic energy after the interaction between the two objects.
2D Collisions
Investigate elastic collisions in two dimensions using two frictionless pucks. The mass, velocity, and initial position of each puck can be modified to create a variety of scenarios.5 Minute Preview
Energy of a Pendulum
Perform experiments with a pendulum to gain an understanding of energy conservation in simple harmonic motion. The mass, length, and gravitational acceleration of the pendulum can be adjusted, as well as the initial angle. The potential energy, kinetic energy, and total energy of the oscillating pendulum can be displayed on a table, bar chart or graph.5 Minute Preview
Roller Coaster Physics
Adjust the hills on a toy-car roller coaster and watch what happens as the car careens toward an egg (that can be broken) at the end of the track. The heights of three hills can be manipulated, along with the mass of the car and the friction of the track. A graph of various variables of motion can be viewed as the car travels, including position, speed, acceleration, potential energy, kinetic energy, and total energy.5 Minute Preview
PII.2: : Temperature and Thermal Energy Transfer
PII.2.2: : Describe the process of the transfer of thermal energy (i.e. heat) that occurs during the heating cycle of a substance from solid to gas and relate the changes in molecular motion to temperature changes that are observed.
Phase Changes
Explore the relationship between molecular motion, temperature, and phase changes. Compare the molecular structure of solids, liquids, and gases. Graph temperature changes as ice is melted and water is boiled. Find the effect of altitude on phase changes. The starting temperature, ice volume, altitude, and rate of heating or cooling can be adjusted.5 Minute Preview
PII.3: : Fluids
PII.3.2: : Qualitatively and quantitatively determine how the density of fluid or volume of fluid displaced is related to the force due to buoyancy acting on either a floating or submerged object as described by Archimedes’ principle of buoyancy.
Archimedes' Principle
地方权重成船,看看船多远sinks into a tank of liquid. The depth of the boat can be measured, as well as the amount of liquid displaced. The dimensions of the boat and the density of the liquid can be adjusted. See how much weight the boat can hold before it sinks to the bottom!5 Minute Preview
Density Experiment: Slice and Dice
Drop a chunk of material in a beaker of water and observe whether it sinks or floats. Cut the chunk into smaller pieces of any size, and observe what happens as they are dropped in the beaker. The mass and volume of each chunk can be measured to gain a clear understanding of density and buoyancy.5 Minute Preview
Density Laboratory
规模来衡量质量,量筒to measure volume, and a large beaker of liquid to observe flotation, the relationship between mass, volume, density, and flotation can be investigated. The density of the liquid in the beaker can be adjusted, and a variety of objects can be studied during the investigation.5 Minute Preview
Determining Density via Water Displacement
Drop objects in a beaker that is filled with water, and measure the water that flows over the edge. Using Archimedes' principle, determine the density of objects based on the amount of displaced water.5 Minute Preview
PII.5: : Simple and Complex Circuits
PII.5.1: : Relate the idea of electric potential energy to electric potential (i.e. voltage) in the context of electric circuits.
Advanced Circuits
Build compound circuits with series and parallel elements. Calculate voltages, resistance, and current across each component using Ohm's law and the equivalent resistance equation. Check your answers using a voltmeter, ammeter, and ohmmeter. Learn the function of fuses as a safety device.5 Minute Preview
Circuit Builder
Create circuits using batteries, light bulbs, switches, fuses, and a variety of materials. Examine series and parallel circuits, conductors and insulators, and the effects of battery voltage. Thousands of different circuits can be built with this Gizmo.5 Minute Preview
Circuits
建立电路使用电池,光bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison.5 Minute Preview
PII.5.2: : Develop graphical and mathematical representations that describe the relationship between the between the amount of current passing through an ohmic device and the amount of voltage (i.e. EMF) applied across the device according to Ohm’s Law. Apply those representations to qualitatively and quantitatively describe how changing the current affects the voltage and vice versa for an ohmic device of known resistance.
Advanced Circuits
Build compound circuits with series and parallel elements. Calculate voltages, resistance, and current across each component using Ohm's law and the equivalent resistance equation. Check your answers using a voltmeter, ammeter, and ohmmeter. Learn the function of fuses as a safety device.5 Minute Preview
Circuits
建立电路使用电池,光bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison.5 Minute Preview
PII.5.5: : Explain and analyze simple arrangements of electrical components in series and parallel DC circuits in terms of current, resistance, voltage and power. Use Ohm’s and Kirchhoff’s laws to analyze DC circuits.
Advanced Circuits
Build compound circuits with series and parallel elements. Calculate voltages, resistance, and current across each component using Ohm's law and the equivalent resistance equation. Check your answers using a voltmeter, ammeter, and ohmmeter. Learn the function of fuses as a safety device.5 Minute Preview
Circuit Builder
Create circuits using batteries, light bulbs, switches, fuses, and a variety of materials. Examine series and parallel circuits, conductors and insulators, and the effects of battery voltage. Thousands of different circuits can be built with this Gizmo.5 Minute Preview
Circuits
建立电路使用电池,光bulbs, resistors, fuses, wires, and a switch. An ammeter, a voltmeter and an ohmmeter are available for measuring current, voltage and resistance throughout the circuit. The voltage of the battery and the precision of the meters can be adjusted. Multiple circuits can be built for comparison.5 Minute Preview
PII.6: : Magnetism
PII.6.5: : Describe the practical uses of magnetism in motors, electronic devices, mass spectroscopy, MRIs, and other applications.
Electromagnetic Induction
Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire.5 Minute Preview
Magnetic Induction
Measure the strength and direction of the magnetic field at different locations in a laboratory. Compare the strength of the induced magnetic field to Earth's magnetic field. The direction and magnitude of the inducting current can be adjusted.5 Minute Preview
PII.7: : Electromagnetic Induction
PII.7.3: : Apply Ohm’s Law, Faraday’s Law, and Lenz’s Law to determine the amount and direction of current induced by a changing magnetic flux in a loop of wire or simple loop circuit.
Electromagnetic Induction
Explore how a changing magnetic field can induce an electric current. A magnet can be moved up or down at a constant velocity below a loop of wire, or the loop of wire may be dragged in any direction or rotated. The magnetic and electric fields can be displayed, as well as the magnetic flux and the current in the wire.5 Minute Preview
PII.8: : Geometric Optics
PII.8.1: : Develop graphical, mathematical, and pictorial representations (e.g. ray diagrams) that describe the relationships between the focal length, the image distance and the object distance for planar, converging, and diverging mirrors and apply those representations to qualitatively and quantitatively describe how changing the object distance affects the image distance.
Ray Tracing (Lenses)
Observe light rays that pass through a convex or concave lens. Manipulate the position of an object and the focal length of the lens and measure the distance and size of the resulting image.5 Minute Preview
Ray Tracing (Mirrors)
Observe light rays that reflect from a convex or concave mirror. Manipulate the position of an object and the focal length of the mirror and measure the distance and size of the resulting image.5 Minute Preview
PII.8.3: : Develop graphical, mathematical, and pictorial representations (e.g. ray diagrams) that describe the relationships between the focal length, the image distance, and the object distance for both converging and diverging lenses and apply those representations to qualitatively and quantitatively describe how changing the object distance affects the image distance.
Ray Tracing (Lenses)
Observe light rays that pass through a convex or concave lens. Manipulate the position of an object and the focal length of the lens and measure the distance and size of the resulting image.5 Minute Preview
PII.8.4: : Describe an image as real or virtual for both a curved mirror and lens system based on the position of the image relative to the optical device.
Ray Tracing (Lenses)
Observe light rays that pass through a convex or concave lens. Manipulate the position of an object and the focal length of the lens and measure the distance and size of the resulting image.5 Minute Preview
Ray Tracing (Mirrors)
Observe light rays that reflect from a convex or concave mirror. Manipulate the position of an object and the focal length of the mirror and measure the distance and size of the resulting image.5 Minute Preview
PII.9: : Particle and Wave Nature of Light
PII.9.2: : Explain how electromagnetic waves interact with matter both as particles (i.e. photons) and as waves and be able to apply the most appropriate model to any particular scenario.
Photoelectric Effect
Shoot a beam of light at a metal plate in a virtual lab and observe the effect on surface electrons. The type of metal as well as the wavelength and amount of light can be adjusted. An electric field can be created to resist the electrons and measure their initial energies.5 Minute Preview
Correlation last revised: 9/16/2020
About STEM Cases
Students assume the role of a scientist trying to solve a real world problem. They use scientific practices to collect and analyze data, and form and test a hypothesis as they solve the problems.
Each STEM Case uses realtime reporting to show live student results.
Introduction to the Heatmap
STEM Cases take between 30-90 minutes for students to complete, depending on the case.
Student progress is automatically saved so that STEM Cases can be completed over multiple sessions.
Multiple grade-appropriate versions, or levels, exist for each STEM Case.
Each STEM Case level has an associated Handbook. These are interactive guides that focus on the science concepts underlying the case.
How Free Gizmos Work
Start teaching with20-40 Free Gizmos.See the full list.
Accesslesson materialsfor Free Gizmos including teacher guides, lesson plans, and more.
All other Gizmos are limited to a5 Minute Previewand can only be used for 5 minutes a day.
Free Gizmos change each semester.Thenew collectionwill be available Jul 01, 2023.
Find Your Solution
Start playing, exploring and learning today with a free account. Or contact us for a quote or demo.
Sign Up For Free Get a Quote