这种相关性列出了该州课程标准推荐的小发明。点击下面的任何Gizmo标题了解更多信息。
A1。N:数字和操作
A1.N。1:扩展对数字和运算的理解,包括平方根和立方根。
A1.N.1.1::用最简根式写出单次代数表达式的平方根和立方根。
简化激进表达式
化简根式。使用逐步反馈来诊断任何不正确的步骤。 5分钟预告
A1.N.1.2::单项代数表达式的加、减、乘、化简平方根和整数的平方根,必要时使分母合理化。
简化激进表达式
化简根式。使用逐步反馈来诊断任何不正确的步骤。 5分钟预告
A1。答:代数推理与代数
A1.A。1:使用线性方程、绝对值方程和方程组表示和解决数学和现实世界的问题;在原始上下文中解释解决方案。
A1.A.1.1:使用解方程有理数的知识来表示和解决数学和现实世界的问题(例如,角度测量、几何公式、科学或统计学),并在原始环境中解释解。
绝对值方程与不等式
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。 5分钟预告
解代数方程2
解方程难吗?如果你知道如何分离一个变量,你就成功了一半。另一半呢?不要做任何破坏等式平衡的事情。加入我们勇敢的变量朋友,当他遇到代数方程和一个(有时暴躁的)等号。稍加练习,你会发现解方程一点也不棘手。 5分钟预告
求解线性系统(标准形式)
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x ,y 值是一个方程或一个方程组的解。 5分钟预告
A1.A.1.2:解绝对值方程,并在原语境中解释解。
绝对值方程与不等式
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。 5分钟预告
线性函数的绝对值
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。 5分钟预告
A1.A.1.3:通过绘图(可能包括绘图计算器或其他适当的技术)、代换和消去,分析和解决涉及最多两个变量的线性方程组的现实世界和数学问题。在原始上下文中解释解决方案。
通过绘制每边来解方程
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。 5分钟预告
求解线性系统(矩阵和特殊解)
探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x ,y )指向一个方程或方程组的解。 5分钟预告
求解线性系统(斜截式)
用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
(x ,y ) 点是一个方程的解,或两个方程组的解。 5分钟预告
求解线性系统(标准形式)
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x ,y 值是一个方程或一个方程组的解。 5分钟预告
A1.A。2: : Represent and solve real-world and mathematical problems using linear inequalities, compound inequalities and systems of linear inequalities; interpret solutions in the original context.
A1.A.2.1::用线性不等式表示各种情况下的关系;求解得到的不等式,在坐标平面上绘制图形,并解释解。
化合物的不平等
探索两个不等式的图形,找到它们的并集或交点。确定不等式的端点和复合不等式的端点之间的关系。 5分钟预告
探讨单变量线性不等式
解决一个变量的不等式。检查数轴上的不等式,并确定哪些点是不等式的解。 5分钟预告
二元线性不等式
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。 5分钟预告
求解单变量线性不等式
解决一个变量的一步不等式。把解画在数轴上。 5分钟预告
线性不等式系统(斜截式)
将线性不等式系统与其图进行比较。改变系统中的系数和不等式符号,并探索边界线、阴影区域和阴影区域的交集如何响应变化。 5分钟预告
A1.A.2.2::用复合和绝对值不等式表示各种情况下的关系,并通过在数轴上绘制和解释解来求解所产生的不等式。
绝对值方程与不等式
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。 5分钟预告
小数的比较和排序
使用网格对十进制数字建模并以图形方式进行比较。然后在数轴上比较这些数字。 5分钟预告
化合物的不平等
探索两个不等式的图形,找到它们的并集或交点。确定不等式的端点和复合不等式的端点之间的关系。 5分钟预告
求解单变量线性不等式
解决一个变量的一步不等式。把解画在数轴上。 5分钟预告
A1.A.2.3::求解最多有两个变量的线性不等式系统;在一个坐标平面上画出并解释解。
线性规划
利用可行域图求目标函数的最大值或最小值。改变目标函数的系数,改变约束条件。探索可行域的图是如何响应变化的。 5分钟预告
线性不等式系统(斜截式)
将线性不等式系统与其图进行比较。改变系统中的系数和不等式符号,并探索边界线、阴影区域和阴影区域的交集如何响应变化。 5分钟预告
A1.A。3:生成等价代数表达式,并使用代数属性来计算表达式和算术和几何序列。
A1.A.3.1::用一个变量来表示其他变量,解包含多个变量的方程。
三角形面积
使用动态三角形来探索三角形的区域。在动画的帮助下,看到任何三角形总是平行四边形的一半(具有相同的底和高)。同样,一个类似的动画显示了平行四边形和矩形之间的联系。 5分钟预告
求解任意变量的公式
选择正确的步骤来求解给定变量的公式。使用反馈来诊断不正确的步骤。 5分钟预告
A1.A.3.2::通过加、减或乘来简化多项式表达式。
多项式的加法
使用面积模型添加多项式。使用逐步反馈来诊断任何错误。 5分钟预告
A1.A.3.3::从多项式表达式和导系数为1的因子二次表达式中提取常见的单因子。
保理特殊产品
选择正确的步骤来分解包含完全平方二项式、平方之差或常数因子的多项式。使用反馈来诊断不正确的步骤。 5分钟预告
的分解建模斧头 2 +bx +c
用面积模型分解先导系数大于1的多项式。使用逐步反馈来诊断任何错误。 5分钟预告
的分解建模x 2 +bx +c
用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。 5分钟预告
因式二次方程
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。 5分钟预告
A1.A.3.4::计算线性、绝对值、有理表达式和根式。包括应用非标准操作,如a⊙b= 2a + b。
绝对值方程与不等式
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。 5分钟预告
线性函数的绝对值
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。 5分钟预告
通过绘制每边来解方程
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。 5分钟预告
直线的标准形式
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。 5分钟预告
A1.A.3.5:认识到等差数列是线性的,使用方程、表格、图形和语言描述。利用这个模式,找到下一项。
等差数列与几何数列
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。 5分钟预告
A1.A.3.6:利用方程、表格、图表和语言描述,认识到几何序列是指数的。给定公式f(x) = a(r)x,找到下一项,并在问题的上下文中定义a和r的含义。
等差数列与几何数列
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。 5分钟预告
A1.A。4:分析现实世界和数学问题中涉及线性方程的数学变化。
A1.A.4.1:使用图形、方程、两点或一组数据点来计算和解释斜率以及直线的x轴和y轴截距,以解决现实世界和数学问题。
猫和老鼠(线性系统建模)
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。 5分钟预告
线性函数
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。 5分钟预告
直线的点斜式
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。 5分钟预告
点,线和方程
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。 5分钟预告
坡
探索一条直线的斜率,并学习如何计算斜率。通过移动直线上的点来调整直线,并观察其斜率的变化。 5分钟预告
直线的斜截式
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。 5分钟预告
直线的标准形式
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。 5分钟预告
A1.A.4.2:解决涉及平行、垂直、水平或垂直线的数学和现实问题。
线性函数
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。 5分钟预告
平行线,相交线和斜线
探索相交线、平行线、斜线以及平面上的线的性质。在三维空间中旋转平面和线条,以确保对这些物体的充分理解。 5分钟预告
直线的点斜式
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。 5分钟预告
直线的标准形式
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。 5分钟预告
A1.A.4.3:用斜截式、点斜式和标准形式表示线性方程,并在这些形式之间进行转换。给定足够的信息(斜率和y截距,斜率和直线上的一点,直线上的两点,x和y截距,或一组数据点),写出一条直线的方程。
二元线性不等式
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。 5分钟预告
直线的点斜式
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。 5分钟预告
点,线和方程
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。 5分钟预告
坡
探索一条直线的斜率,并学习如何计算斜率。通过移动直线上的点来调整直线,并观察其斜率的变化。 5分钟预告
直线的斜截式
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。 5分钟预告
直线的标准形式
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。 5分钟预告
A1.A.4.4::在图形和定性描述的情况之间转换。
点,线和方程
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。 5分钟预告
A1。F::函数
A1.F。1:在现实世界和数学问题中,将函数理解为共变(相关量如何一起变化)的描述。
A1.F.1.1::区分关系和函数。
函数简介
使用映射图、有序对或关系图确定关系是否是函数。将箭头从域拖到范围,键入有序的对,或将点拖到图中,以便向关系添加输入和输出。 5分钟预告
线性函数
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。 5分钟预告
点,线和方程
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。 5分钟预告
A1.F。2: : Recognize functions and understand that families of functions are characterized by their rate of change.
A1.F.2.1:区分线性和非线性(包括指数)函数,这些函数来自真实世界和用表格、图形和方程表示的数学情况。要明白线性函数以等间隔增长,指数函数在等间隔上以等因子增长。
线性函数的绝对值
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。 5分钟预告
复利
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。 5分钟预告
正变分与逆变分
调整变异常数,探索正变异函数或逆变异函数的曲线如何响应变化。比较直接变分函数和逆变分函数。 5分钟预告
线性函数
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。 5分钟预告
直线的斜截式
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。 5分钟预告
A1.F。3:以多种方式表示函数,并使用该表示来解释现实世界和数学问题。
A1.F.3.1:识别并生成线性方程、图形、表格和现实情况的等效表示。
算术序列
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。 5分钟预告
几何序列
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。 5分钟预告
线性函数
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。 5分钟预告
点,线和方程
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。 5分钟预告
直线的斜截式
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。 5分钟预告
A1.F.3.2::使用函数表示法;用代数和图形的方法求一个函数,包括非线性函数,在其域的给定点上。根据现实世界和数学问题解释结果。
对数函数
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y =x 比较相关的指数函数。 5分钟预告
A1。D:数据和概率
A1.D。1::显示、描述和比较数据。对于线性关系,进行预测并评估这些预测的可靠性。
A1.D.1.1:使用数据显示描述数据集,使用汇总统计信息描述和比较数据集,包括集中趋势、位置和分布的度量。了解如何使用计算器、电子表格或其他适当的技术来显示数据和计算汇总统计数据。
Box-and-Whisker情节
构造一个盒须图来匹配线状图,并构造一个线状图来匹配盒须图。操作线形图并检查盒须图如何变化。然后操作盒须图并检查线形图如何变化。 5分钟预告
相关
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。 5分钟预告
使用统计数据描述数据
通过图来研究数据集的平均值、中位数、模态和范围。操作数据并观察平均值、中位数、模式和范围如何变化(或者在某些情况下,如何保持不变)。 5分钟预告
均值,中值和模式
建立一个数据集并找到平均值、中位数和众数。探索以跷跷板上的青蛙、秤上的青蛙和堆叠在可变高度杆下的青蛙为例说明的平均值、中位数和模式。 5分钟预告
反应时间1(图表和统计)
通过抓住掉落的尺子或点击目标来测试你的反应时间。创建一个实验结果的数据集,并计算数据的范围、模式、中位数和平均值。数据可以显示在列表、表格、柱状图或点阵图上。反应时间1学生探索的重点是范围,模式和中位数。 5分钟预告
实时的直方图
试着每2秒点击一次鼠标。记录每次点击之间的时间间隔,以及误差和百分比误差。数据可以以表格、直方图或散点图的形式显示。当收集大量数据时,观察和测量结果分布的特征。 5分钟预告
茎叶图
构建一个数据集,并将数据集的折线图与茎叶图进行比较。 5分钟预告
A1.D.1.2:收集数据并使用散点图分析模式并描述两个变量之间的线性关系。运用制图技术,确定回归线和相关系数;使用回归线进行预测,并使用相关系数来评估这些预测的可靠性。
相关
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。 5分钟预告
最小二乘最佳拟合直线
用你自己的判断为散点图中的数据拟合一条线。然后比较最佳拟合的最小二乘线。 5分钟预告
利用趋势线求解
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。 5分钟预告
散点图趋势
检查具有负相关或正相关的随机数据集的散点图。改变相关性并探索相关性如何反映在散点图和趋势线中。 5分钟预告
A1.D。2: : Calculate probabilities and apply probability concepts.
A1.D.2.1:选择和应用计数程序,如乘法和加法原则和树形图,以确定样本空间的大小(可能结果的数量)并计算概率。
二项概率
利用树形图、条形图和直接计算,找出二项实验中若干成功或失败的概率。 5分钟预告
独立和从属事件
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。 5分钟预告
排列和组合
从一个盒子中随机选择一些字母的排列和组合。使用动态树形图、动态排列列表和计数原理的动态计算来计数排列和组合。 5分钟预告
A1.D.2.3:通过执行涉及概率模型的模拟或实验并使用结果的相对频率来计算实验概率。
二项概率
利用树形图、条形图和直接计算,找出二项实验中若干成功或失败的概率。 5分钟预告
几何概率
随机向目标投掷飞镖,看看“命中”的百分比是多少。改变目标的大小,重复实验。研究目标的面积和击中目标的飞镖的百分比之间的关系 5分钟预告
独立和从属事件
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。 5分钟预告
概率模拟
用旋流器进行实验,将特定结果的实验概率与理论概率进行比较。选择旋流器的数量,旋流器上的节数,以及旋流的有利结果。然后统计有利结果的数量。 5分钟预告
理论和实验概率
用旋流器进行实验,将特定结果的实验概率与理论概率进行比较。选择旋流器的数量,旋流器上的节数,以及旋流的有利结果。然后统计有利结果的数量。 5分钟预告