这种相关性列出了该州课程标准推荐的小发明。点击下面的任何Gizmo标题了解更多信息。
8.MP:数学实践
(框架文本):学生在学习、体验和应用这些技能和态度的过程中,可以熟练地参与数学内容和概念。
8. mp。他说:认识问题,并坚持解决问题。
从给定的定义中使用词块来做一个双条件语句。使用符号形式和标准英语形式。5分钟预告
根据给定的事实,用词块做一个条件语句。使用符号形式和标准英语形式。5分钟预告
调整湖中要标记的鱼的数量和要重新捕获的鱼的数量。用捕获的带标签的鱼的数量来估计湖里的鱼的数量。5分钟预告
在模式翻转狂欢游戏中,你会看到纸牌的模式。第一张卡片是朝上的,这样你就可以看到图案,剩下的卡片是朝下的。你能猜出面朝下的卡片上有哪些动物吗?使用预设模式之一,或制作自己的自定义模式。好运!5分钟预告
8. mp.1。答:解释问题的含义,并寻找解决方案的切入点。分析给定条件、约束条件、关系和目标。对解决方案的形式和意义进行猜测,计划解决方案途径,并不断地监控进展,问自己:“这有意义吗?”考虑类似的问题,在多个表示之间建立联系,确定不同方法之间的对应关系,寻找趋势,并转换代数表达式以突出有意义的数学。用另一种方法检查问题的答案。
从给定的定义中使用词块来做一个双条件语句。使用符号形式和标准英语形式。5分钟预告
使用面积模型建模和比较分数、小数和百分比。每个区域模型可以有10个或100个部分,可以设置为显示分数、小数或百分比。单击区域模型内部以使其着色。比较数字的视觉或数轴。5分钟预告
将阴影区域给出的一个量表示为假分数和混和数。用不同的阴影区域进行不同的切片实验。5分钟预告
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。5分钟预告
用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。5分钟预告
使用动态面积模型将两个小数相乘。在网格上,用宽度等于其中一个小数,高度等于另一个小数的阴影区域,并找出区域的面积。5分钟预告
在模式翻转狂欢游戏中,你会看到纸牌的模式。第一张卡片是朝上的,这样你就可以看到图案,剩下的卡片是朝下的。你能猜出面朝下的卡片上有哪些动物吗?使用预设模式之一,或制作自己的自定义模式。好运!5分钟预告
对一个大城市的居民进行民意调查,以确定他们对“是”或“否”问题的反应。估计全城投赞成票的实际比例。检查许多民意调查的结果,以帮助评估单个民意调查结果的可靠性。看看对于足够大的民意调查,正态曲线是如何逼近二项分布的。5分钟预告
用数轴上的动态箭头解一个包含小数的方程。5分钟预告
将代数表达式翻译成英语短语,并将英语短语翻译成代数表达式。阅读表达式或短语并选择单词瓦格或符号瓦格以形成相应的短语或短语。5分钟预告
8. mp。2:抽象的和定量的原因。
根据给定的事实,用词块做一个条件语句。使用符号形式和标准英语形式。5分钟预告
调整湖中要标记的鱼的数量和要重新捕获的鱼的数量。用捕获的带标签的鱼的数量来估计湖里的鱼的数量。5分钟预告
8. mp。3:构建可行的论点并批评他人的推理。
从给定的定义中使用词块来做一个双条件语句。使用符号形式和标准英语形式。5分钟预告
8. mp.3。答:理解并使用陈述的假设、定义和先前建立的结果来构建论点。进行猜想并建立一个逻辑顺序的陈述来探索他们猜想的真实性。证明结论并与他人交流。通过倾听、提出澄清性的问题和批评他人的推理来回应他人的论点。
从给定的定义中使用词块来做一个双条件语句。使用符号形式和标准英语形式。5分钟预告
根据给定的事实,用词块做一个条件语句。使用符号形式和标准英语形式。5分钟预告
8. mp。4:用数学建模。
用面积模型估计两个分数的和或差。将估算值与准确的总和和差异进行比较。5分钟预告
8. mp。5:有策略地使用适当的工具。
计算两个模拟时钟给出的时间之差。旋转时钟的指针来改变时间,看看计算是如何变化的。5分钟预告
8. mp.5。答:考虑可用的工具,并充分熟悉它们,以便对每个工具何时可能有用做出合理的决定,认识到可以获得的洞察力以及局限性。识别相关的外部数学资源,并利用它们来提出或解决问题。使用工具来探索和加深他们对概念的理解。
探索位于线段垂直平分线上的点和位于角平分线上的点的特殊性质。操作点、线段和角度,看看这些属性是否始终为真。5分钟预告
8. mp。6:注意精度。
从给定的定义中使用词块来做一个双条件语句。使用符号形式和标准英语形式。5分钟预告
使用面积模型建模和比较分数、小数和百分比。每个区域模型可以有10个或100个部分,可以设置为显示分数、小数或百分比。单击区域模型内部以使其着色。比较数字的视觉或数轴。5分钟预告
将代数表达式翻译成英语短语,并将英语短语翻译成代数表达式。阅读表达式或短语并选择单词瓦格或符号瓦格以形成相应的短语或短语。5分钟预告
8. mp.6。答:准确地与他人沟通。在与他人讨论和推理时使用明确的定义。他们陈述他们选择的符号的含义。指定测量单位和标记轴,以澄清与问题中数量的对应关系。准确有效地计算,表达数值答案的精度与问题的上下文适当的程度。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
构建一个模式来完成一个模式序列。研究网格中三种正方形图案的序列,并在网格中构建该序列的第四个图案。5分钟预告
使用面积模型建模和比较分数、小数和百分比。每个区域模型可以有10个或100个部分,可以设置为显示分数、小数或百分比。单击区域模型内部以使其着色。比较数字的视觉或数轴。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
在模式翻转狂欢游戏中,你会看到纸牌的模式。第一张卡片是朝上的,这样你就可以看到图案,剩下的卡片是朝下的。你能猜出面朝下的卡片上有哪些动物吗?使用预设模式之一,或制作自己的自定义模式。好运!5分钟预告
8. mp。7:寻找并利用结构。
在模式翻转狂欢游戏中,你会看到纸牌的模式。第一张卡片是朝上的,这样你就可以看到图案,剩下的卡片是朝下的。你能猜出面朝下的卡片上有哪些动物吗?使用预设模式之一,或制作自己的自定义模式。好运!5分钟预告
8. mp.7。答:仔细观察数学关系,通过识别更复杂结构中的简单结构来识别底层结构。把复杂的事物,如某些代数表达式,看作单个物体或由几个物体组成。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
构建一个模式来完成一个模式序列。研究网格中三种正方形图案的序列,并在网格中构建该序列的第四个图案。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
在模式翻转狂欢游戏中,你会看到纸牌的模式。第一张卡片是朝上的,这样你就可以看到图案,剩下的卡片是朝下的。你能猜出面朝下的卡片上有哪些动物吗?使用预设模式之一,或制作自己的自定义模式。好运!5分钟预告
8. mp。8:在反复的推理中寻找并表达规律性。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
构建一个模式来完成一个模式序列。研究网格中三种正方形图案的序列,并在网格中构建该序列的第四个图案。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
观察青蛙在彩色的睡莲叶子上跳来跳去。发现、测试和推理你所看到的它们跳跃的模式。5分钟预告
在模式翻转狂欢游戏中,你会看到纸牌的模式。第一张卡片是朝上的,这样你就可以看到图案,剩下的卡片是朝下的。你能猜出面朝下的卡片上有哪些动物吗?使用预设模式之一,或制作自己的自定义模式。好运!5分钟预告
8. mp.8。答:注意是否重复推理,寻找归纳和捷径。在关注细节的同时,保持对过程的监督,评估中间结果的合理性。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
8.NS::数字系统
要知道有些数是非有理数,用有理数来近似它们。
8. ns。1:要知道非有理数被称为无理数。非正式地理解每个数字都有十进制展开;对于有理数,证明十进制展开式最终重复,并将最终重复的十进制展开式转换为有理数。
比较用面积表示的比率与百分数、分数和十进制形式。5分钟预告
比较用面积表示的量与其百分比、分数和十进制形式。5分钟预告
8. ns。2:使用无理数的有理数近似值来比较无理数的大小,在数线图上大致定位它们,并估计表达式的值(例如π²)。
在数轴上取平方根。用网格中正方形区域的边长近似求平方根。5分钟预告
8. ns。3:了解如何执行操作和简化根号,重点是平方根。
确定使用激进表达式完成操作的正确步骤。使用逐步反馈来诊断不正确的步骤。5分钟预告
化简根式。使用逐步反馈来诊断任何不正确的步骤。5分钟预告
8.表达式和方程
(框架文本)::工作与根号和整数指数。
8.情感表达。1:了解并应用整数指数的性质,生成等价的数值表达式。
选择正确的步骤来划分指数表达式。使用反馈来诊断不正确的步骤。5分钟预告
选择正确的步骤,使用指数和幂的规则来简化带有指数的表达式。使用反馈来诊断不正确的步骤。5分钟预告
选择正确的步骤来乘指数表达式。使用反馈来诊断不正确的步骤。5分钟预告
你会收养Spidro, Centeon,还是Ping Bee?它们是三种完全不同的生物,但有一个共同点:渴望简化代数表达式!了解如何使用分配律来组合可变术语,生成有助于您的宠物健康强壮成长的表达式。您将成为识别可以组合的术语的专家-甚至是带有指数和多个变量的术语。经过足够的练习,你和你的宠物将准备好竞争表情吃电路。好运!5分钟预告
8.情感表达。2:使用平方根和立方根符号表示x²= p和x³= p形式方程的解,其中p是正有理数。求小完全平方的平方根和小完全立方的立方根。√2是无理数。
确定使用激进表达式完成操作的正确步骤。使用逐步反馈来诊断不正确的步骤。5分钟预告
化简根式。使用逐步反馈来诊断任何不正确的步骤。5分钟预告
用面积模型探讨平方根的意义。用一个正方形的边长来求小数或整数的平方根。5分钟预告
8.情感表达。3:用一个数字乘以10的整数次方的形式来估计非常大或非常小的数量,并表示一个是另一个的几倍。
使用单位转换小发明探索科学计数法和有效数字的概念。将数字转换为科学计数法。确定测量值和计算中的有效位数。5分钟预告
8.情感表达。4:用科学记数法表示的数字执行运算,包括同时使用十进制和科学记数法的问题。对于非常大或非常小的量的测量,使用科学计数法并选择适当大小的单位(例如,海底扩张使用毫米/年)。解释由技术产生的科学符号。
使用单位转换磁贴从一个单位转换到另一个单位。可以翻转磁贴来取消单位。在公制单位之间或在公制和美国习惯单位之间进行转换。解决距离、时间、速度、质量、体积和密度问题。5分钟预告
使用单位转换小发明探索科学计数法和有效数字的概念。将数字转换为科学计数法。确定测量值和计算中的有效位数。5分钟预告
(框架文本):理解比例关系、直线关系和线性关系之间的联系。
8.情感表达。5:图的比例关系,将单位速率解释为图的斜率。比较用不同方式表示的两种不同比例关系。
调整变异常数,探索正变异函数或逆变异函数的曲线如何响应变化。比较直接变分函数和逆变分函数。5分钟预告
创建一个跑步者位置与时间的图表,并观察跑步者完成40码冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
创建一个跑步者的位置与时间的图表,并观察跑步者根据你所做的图表跑40码。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
8.情感表达。6:用相似三角形来解释为什么在坐标平面上非垂直线上的任意两个不同点之间的斜率m是相同的;对于经过原点的直线,推导出方程y = mx;对于在b处截自纵轴的直线,推导出方程y = mx + b。
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
(框架文本):分析和解决线性方程和不等式以及联立线性方程对。
8.情感表达。7:在一个变量中求解线性方程和不等式。
8. ee.7。答:给出单变量线性方程的一个解、无穷多个解或无解的例子。通过将给定的方程依次转换为更简单的形式,直到得到x = a, a = a或a = b形式的等效方程(其中a和b是不同的数字),来表明哪种情况是正确的。
用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。5分钟预告
用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。5分钟预告
解方程难吗?如果你知道如何分离一个变量,你就成功了一半。另一半呢?不要做任何破坏等式平衡的事情。加入我们勇敢的变量朋友,当他遇到代数方程和一个(有时暴躁的)等号。稍加练习,你会发现解方程一点也不棘手。5分钟预告
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。5分钟预告
用数轴上的动态箭头解一个包含小数的方程。5分钟预告
选择正确的步骤来解一个两步方程。使用反馈来诊断不正确的步骤。5分钟预告
8. ee.7。b:求解单变量有理数系数线性方程和不等式,包括需要利用分配律展开表达式和收集同类项的方程和不等式。
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。5分钟预告
探索两个不等式的图形,找到它们的并集或交点。确定不等式的端点和复合不等式的端点之间的关系。5分钟预告
解决一个变量的不等式。检查数轴上的不等式,并确定哪些点是不等式的解。5分钟预告
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。5分钟预告
用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。5分钟预告
用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。5分钟预告
有没有时候你希望自己能逃离所有人,只是一个人呆着?来见见我们的变量朋友,一个真正的孤独者,他不喜欢系数和相邻项。学习如何使用逆来分离变量-解决代数方程的基本技能。5分钟预告
解方程难吗?如果你知道如何分离一个变量,你就成功了一半。另一半呢?不要做任何破坏等式平衡的事情。加入我们勇敢的变量朋友,当他遇到代数方程和一个(有时暴躁的)等号。稍加练习,你会发现解方程一点也不棘手。5分钟预告
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。5分钟预告
用数轴上的动态箭头解一个包含小数的方程。5分钟预告
解决一个变量的一步不等式。把解画在数轴上。5分钟预告
选择正确的步骤来解一个两步方程。使用反馈来诊断不正确的步骤。5分钟预告
8.EE.7.c::解单变量绝对值方程。
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。5分钟预告
8.情感表达。8:分析和解决联立线性方程对。
8. ee.8。答:理解两个变量的线性方程组的解对应于它们图的交点,因为交点同时满足两个方程。
用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
(x,y)点是一个方程的解,或两个方程组的解。5分钟预告
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
8. ee.8。b:用图形方法求解两个变量的线性方程组,当解不是整数时进行近似,并通过绘制方程来估计解。通过检查解决简单案件。
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。5分钟预告
探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x,y)指向一个方程或方程组的解。5分钟预告
用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
(x,y)点是一个方程的解,或两个方程组的解。5分钟预告
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
8.EE.8.c:图形化地解决导致两个变量线性方程的现实问题和数学问题。
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。5分钟预告
探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x,y)指向一个方程或方程组的解。5分钟预告
用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
(x,y)点是一个方程的解,或两个方程组的解。5分钟预告
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
8.F::函数
(框架文本):定义、评估和比较函数。
8. f。1:理解函数是为每个输入分配一个输出的规则。函数的图是由输入和相应的输出组成的有序对的集合。
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
使用映射图、有序对或关系图确定关系是否是函数。将箭头从域拖到范围,键入有序的对,或将点拖到图中,以便向关系添加输入和输出。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
8. f。2:比较两个函数的属性,每个函数都以不同的方式表示(代数,图形,表格中的数字,或口头描述)。
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
8. f。3:解释方程y = mx + b定义一个线性函数,其图形是一条直线;给出非线性函数的例子。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
(框架文本)::使用函数来建模数量之间的关系。
8. f。4:构造一个函数来模拟两个量之间的线性关系。从关系描述或两个(x, y)值中确定函数的变化率和初始值,包括从表或图中读取这些值。解释线性函数的变化率和初始值,根据它所模拟的情况,根据它的图形或值表。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
8. f。5:通过分析图形定性地描述两个量之间的函数关系(例如,函数是增加或减少的,线性或非线性的)。画一个图表来展示已经被口头描述过的功能的定性特征。
创建一个跑步者位置与时间的图表,并观察跑步者完成40码冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
创建一个跑步者的位置与时间的图表,并观察跑步者根据你所做的图表跑40码。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
8.G:几何
(框架文本):使用物理模型、透明度或几何软件理解一致性和相似性。
8. g。1:用实验验证旋转、反射和平移的性质:
8. g.1。a:线与线,线段与相同长度的线段。
重塑和调整一个图形的大小,并检查它的反射是如何变化的。移动反射线,探索反射是如何转换的。5分钟预告
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。5分钟预告
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
8. g.1。b:角的大小是相同的。
重塑和调整一个图形的大小,并检查它的反射是如何变化的。移动反射线,探索反射是如何转换的。5分钟预告
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。5分钟预告
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
8.G.1.c:平行线被取为平行线。
重塑和调整一个图形的大小,并检查它的反射是如何变化的。移动反射线,探索反射是如何转换的。5分钟预告
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。5分钟预告
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
8. g。3:观察到平面的方向在旋转和平移中被保留,但没有反射。使用坐标描述二维图形上的膨胀、平移、旋转和反射的影响。
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
用古老的符号创作你自己的岩石艺术。每个符号都可以平移、旋转和反射。在探索了每种类型的转换之后,看看你是否可以用它们来匹配古代岩石绘画。5分钟预告
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
8. g。5:使用非正式的论证来建立关于三角形的角和和外角,关于平行线被截线所产生的角,以及三角形相似度的角-角准则。
利用动态图形探索互补角、互补角、垂直角和邻角的性质。5分钟预告
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。5分钟预告
测量三角形的内角并求出它们的和。检查是否所有三角形的和都是一样的。此外,还将了解外角的测量与内角测量的关系。5分钟预告
(框架文本):理解并应用毕达哥拉斯定理及其逆定理。
8. g。第6集:探索和解释勾股定理的证明和它的反面。
用动态直角三角形探索勾股定理。利用三角形边长正方形的面积,研究毕达哥拉斯定理的一个直观的几何应用。5分钟预告
在交互式地理定位板中构建直角三角形,并在三角形的两侧构建正方形,以发现勾股定理。5分钟预告
8. g。第7章:在现实世界和二维和三维数学问题中,应用勾股定理来确定直角三角形的未知边长。
用动态直角三角形探索勾股定理。利用三角形边长正方形的面积,研究毕达哥拉斯定理的一个直观的几何应用。5分钟预告
在交互式地理定位板中构建直角三角形,并在三角形的两侧构建正方形,以发现勾股定理。5分钟预告
8. g。8:应用勾股定理求坐标系中两点之间的距离。
探索距离公式作为毕达哥拉斯定理的应用。学会把任意两点看作直角三角形斜边的端点。拖动这些点并检查三角形和距离计算的变化。5分钟预告
用动态直角三角形探索勾股定理。利用三角形边长正方形的面积,研究毕达哥拉斯定理的一个直观的几何应用。5分钟预告
(框架文本):解决现实世界和数学问题,涉及圆柱,圆锥和球体的体积。
8. g。9:了解圆锥、圆柱和球体的体积公式,并利用它们来解决现实世界和数学问题。
改变棱镜或圆柱体的高度和底边或半径长度,并检查其三维表示如何变化。确定基底的面积和固体的体积。将斜棱镜或圆柱的体积与右棱镜或圆柱的体积进行比较。5分钟预告
改变金字塔或锥体的高度和底边或半径长度,并检查其三维表示如何变化。确定基底的面积和固体的体积。将倾斜金字塔或锥体的体积与右金字塔或锥体的体积进行比较。5分钟预告
8.SP:统计和概率
(框架文本):调查二元数据中的关联模式。
8. sp。1:构建和解释二元测量数据的散点图,以调查两个量之间的关联模式。描述模式,如聚类、异常值、正关联或负关联、线性关联和非线性关联。
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。5分钟预告
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。5分钟预告
检查具有负相关或正相关的随机数据集的散点图。改变相关性并探索相关性如何反映在散点图和趋势线中。5分钟预告
8. sp。2:要知道直线被广泛用于模拟两个定量变量之间的关系。对于表明线性关联的散点图,可以非正式地拟合一条直线,并通过判断数据点与直线的接近程度非正式地评估模型拟合。
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。5分钟预告
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。5分钟预告
8. sp。3:利用线性模型的方程在二元测量数据的背景下解决问题,解释斜率和截距。
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。5分钟预告