这种相关性列出了该州课程标准推荐的小发明。点击下面的任何Gizmo标题了解更多信息。
SI。MP:数学实践
(框架文本):学生在学习、体验和应用这些技能和态度的过程中,可以熟练地参与数学内容和概念。
SI.MP。他说:认识问题,并坚持解决问题。
从给定的定义中使用词块来做一个双条件语句。使用符号形式和标准英语形式。5分钟预告
根据给定的事实,用词块做一个条件语句。使用符号形式和标准英语形式。5分钟预告
调整湖中要标记的鱼的数量和要重新捕获的鱼的数量。用捕获的带标签的鱼的数量来估计湖里的鱼的数量。5分钟预告
在模式翻转狂欢游戏中,你会看到纸牌的模式。第一张卡片是朝上的,这样你就可以看到图案,剩下的卡片是朝下的。你能猜出面朝下的卡片上有哪些动物吗?使用预设模式之一,或制作自己的自定义模式。好运!5分钟预告
SI.MP.1。答:解释问题的含义,并寻找解决方案的切入点。分析给定条件、约束条件、关系和目标。对解决方案的形式和意义进行猜测,计划解决方案途径,并不断地监控进展,问自己:“这有意义吗?”考虑类似的问题,在多个表示之间建立联系,确定不同方法之间的对应关系,寻找趋势,并转换代数表达式以突出有意义的数学。用另一种方法检查问题的答案。
从给定的定义中使用词块来做一个双条件语句。使用符号形式和标准英语形式。5分钟预告
使用面积模型建模和比较分数、小数和百分比。每个区域模型可以有10个或100个部分,可以设置为显示分数、小数或百分比。单击区域模型内部以使其着色。比较数字的视觉或数轴。5分钟预告
将阴影区域给出的一个量表示为假分数和混和数。用不同的阴影区域进行不同的切片实验。5分钟预告
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。5分钟预告
用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。5分钟预告
使用动态面积模型将两个小数相乘。在网格上,用宽度等于其中一个小数,高度等于另一个小数的阴影区域,并找出区域的面积。5分钟预告
在模式翻转狂欢游戏中,你会看到纸牌的模式。第一张卡片是朝上的,这样你就可以看到图案,剩下的卡片是朝下的。你能猜出面朝下的卡片上有哪些动物吗?使用预设模式之一,或制作自己的自定义模式。好运!5分钟预告
对一个大城市的居民进行民意调查,以确定他们对“是”或“否”问题的反应。估计全城投赞成票的实际比例。检查许多民意调查的结果,以帮助评估单个民意调查结果的可靠性。看看对于足够大的民意调查,正态曲线是如何逼近二项分布的。5分钟预告
用数轴上的动态箭头解一个包含小数的方程。5分钟预告
将代数表达式翻译成英语短语,并将英语短语翻译成代数表达式。阅读表达式或短语并选择单词瓦格或符号瓦格以形成相应的短语或短语。5分钟预告
SI.MP。2:抽象的和定量的原因。
根据给定的事实,用词块做一个条件语句。使用符号形式和标准英语形式。5分钟预告
调整湖中要标记的鱼的数量和要重新捕获的鱼的数量。用捕获的带标签的鱼的数量来估计湖里的鱼的数量。5分钟预告
SI.MP。3:构建可行的论点并批评他人的推理。
从给定的定义中使用词块来做一个双条件语句。使用符号形式和标准英语形式。5分钟预告
SI.MP.3。答:理解并使用陈述的假设、定义和先前建立的结果来构建论点。进行猜想并建立一个逻辑顺序的陈述来探索他们猜想的真实性。证明结论并与他人交流。通过倾听、提出澄清性的问题和批评他人的推理来回应他人的论点。
从给定的定义中使用词块来做一个双条件语句。使用符号形式和标准英语形式。5分钟预告
根据给定的事实,用词块做一个条件语句。使用符号形式和标准英语形式。5分钟预告
SI.MP。4:用数学建模。
用面积模型估计两个分数的和或差。将估算值与准确的总和和差异进行比较。5分钟预告
SI.MP。5:有策略地使用适当的工具。
计算两个模拟时钟给出的时间之差。旋转时钟的指针来改变时间,看看计算是如何变化的。5分钟预告
SI.MP.5。答:考虑可用的工具,并充分熟悉它们,以便对每个工具何时可能有用做出合理的决定,认识到可以获得的洞察力以及局限性。识别相关的外部数学资源,并利用它们来提出或解决问题。使用工具来探索和加深他们对概念的理解。
探索位于线段垂直平分线上的点和位于角平分线上的点的特殊性质。操作点、线段和角度,看看这些属性是否始终为真。5分钟预告
SI.MP。6:注意精度。
从给定的定义中使用词块来做一个双条件语句。使用符号形式和标准英语形式。5分钟预告
使用面积模型建模和比较分数、小数和百分比。每个区域模型可以有10个或100个部分,可以设置为显示分数、小数或百分比。单击区域模型内部以使其着色。比较数字的视觉或数轴。5分钟预告
将代数表达式翻译成英语短语,并将英语短语翻译成代数表达式。阅读表达式或短语并选择单词瓦格或符号瓦格以形成相应的短语或短语。5分钟预告
SI.MP.6。答:准确地与他人沟通。在与他人讨论和推理时使用明确的定义。他们陈述他们选择的符号的含义。指定测量单位和标记轴,以澄清与问题中数量的对应关系。准确有效地计算,表达数值答案的精度与问题的上下文适当的程度。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
构建一个模式来完成一个模式序列。研究网格中三种正方形图案的序列,并在网格中构建该序列的第四个图案。5分钟预告
使用面积模型建模和比较分数、小数和百分比。每个区域模型可以有10个或100个部分,可以设置为显示分数、小数或百分比。单击区域模型内部以使其着色。比较数字的视觉或数轴。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
在模式翻转狂欢游戏中,你会看到纸牌的模式。第一张卡片是朝上的,这样你就可以看到图案,剩下的卡片是朝下的。你能猜出面朝下的卡片上有哪些动物吗?使用预设模式之一,或制作自己的自定义模式。好运!5分钟预告
SI.MP。7:寻找并利用结构。
在模式翻转狂欢游戏中,你会看到纸牌的模式。第一张卡片是朝上的,这样你就可以看到图案,剩下的卡片是朝下的。你能猜出面朝下的卡片上有哪些动物吗?使用预设模式之一,或制作自己的自定义模式。好运!5分钟预告
SI.MP.7。答:仔细观察数学关系,通过识别更复杂结构中的简单结构来识别底层结构。把复杂的事物,如某些代数表达式,看作单个物体或由几个物体组成。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
构建一个模式来完成一个模式序列。研究网格中三种正方形图案的序列,并在网格中构建该序列的第四个图案。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
在模式翻转狂欢游戏中,你会看到纸牌的模式。第一张卡片是朝上的,这样你就可以看到图案,剩下的卡片是朝下的。你能猜出面朝下的卡片上有哪些动物吗?使用预设模式之一,或制作自己的自定义模式。好运!5分钟预告
SI.MP。8:在反复的推理中寻找并表达规律性。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
构建一个模式来完成一个模式序列。研究网格中三种正方形图案的序列,并在网格中构建该序列的第四个图案。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
观察青蛙在彩色的睡莲叶子上跳来跳去。发现、测试和推理你所看到的它们跳跃的模式。5分钟预告
在模式翻转狂欢游戏中,你会看到纸牌的模式。第一张卡片是朝上的,这样你就可以看到图案,剩下的卡片是朝下的。你能猜出面朝下的卡片上有哪些动物吗?使用预设模式之一,或制作自己的自定义模式。好运!5分钟预告
SI.MP.8。答:注意是否重复推理,寻找归纳和捷径。在关注细节的同时,保持对过程的监督,评估中间结果的合理性。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
答:代数
sse:从表达中看结构
(框架文本):解释表达的结构。
A.SSE。1:用整数指数解释线性表达式和指数表达式,根据上下文表示一个量。
A.SSE.1。a:解释表达式的部分内容,如项、因子和系数。
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
使用单位转换磁贴从一个单位转换到另一个单位。可以翻转磁贴来取消单位。在公制单位之间或在公制和美国习惯单位之间进行转换。解决距离、时间、速度、质量、体积和密度问题。5分钟预告
A.SSE.1。b:通过将一个或多个部分视为单个实体来解释复杂的表达式。
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
将代数表达式翻译成英语短语,并将英语短语翻译成代数表达式。阅读表达式或短语并选择单词瓦格或符号瓦格以形成相应的短语或短语。5分钟预告
A.CED:创建方程式
(框架文本):创建描述数字或关系的方程。将这些限制为线性方程和不等式,以及指数方程。在指数方程的情况下,只限于需要在整数输入下计算指数函数的情况。
交流。1:在一个变量中创建方程和不等式,并用它们来解决问题。包括由线性和简单指数函数产生的方程。
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。5分钟预告
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
解决一个变量的不等式。检查数轴上的不等式,并确定哪些点是不等式的解。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。5分钟预告
用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。5分钟预告
利用二次不等式的图求其解集。改变不等号和不等号符号的术语。检查边界曲线和阴影区域如何响应变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
用数轴上的动态箭头解一个包含小数的方程。5分钟预告
解决一个变量的一步不等式。把解画在数轴上。5分钟预告
选择正确的步骤来解一个两步方程。使用反馈来诊断不正确的步骤。5分钟预告
把方程式翻译成英文句子,再把英文句子翻译成方程式。阅读方程式或句子,选择单词或符号方块组成相应的句子或方程式。5分钟预告
交流。2:在两个或多个变量中创建方程来表示数量之间的关系;用标尺和标尺在坐标轴上画出方程。
用两个无摩擦的冰球研究二维弹性碰撞。每个冰球的质量、速度和初始位置都可以修改,以创建各种场景。5分钟预告
在无摩擦空气轨道上调整两个滑翔机的质量和速度。测量每个滑翔机的速度、动量和动能,因为它们彼此接近和碰撞。碰撞可以是弹性的也可以是非弹性的。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
将平底锅放在悬挂弹簧的末端。测量在锅中加入不同质量的物体时弹簧的拉伸量。创建位移与质量的关系图,以确定弹簧的弹簧常数。5分钟预告
试着通过调整高尔夫球的速度和发射角度来一杆进洞。探索弹丸运动的物理摩擦或理想设置。水平和垂直速度矢量可以显示,以及球的路径。高尔夫球手的高度和重力也可以调节。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
交流。3:用方程或不等式以及方程组和/或不等式表示约束,并在建模上下文中将解决方案解释为可行或不可行的选项。
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。5分钟预告
利用可行域图求目标函数的最大值或最小值。改变目标函数的系数,改变约束条件。探索可行域的图是如何响应变化的。5分钟预告
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
将线性不等式系统与其图进行比较。改变系统中的系数和不等式符号,并探索边界线、阴影区域和阴影区域的交集如何响应变化。5分钟预告
交流。4:重新排列公式以突出感兴趣的量,使用与解方程相同的推理。
选择正确的步骤来求解给定变量的公式。使用反馈来诊断不正确的步骤。5分钟预告
A.REI:用方程和不等式推理
(框架文本):将解方程理解为推理的过程,并解释推理过程。
A.REI。1:从原方程有解的假设出发,从上一步中断言的数字相等出发,如下解释求解线性方程的每一步。构造一个可行的论证来证明一个解决方法。在中学数学III中,学生将用对数解指数方程。
用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。5分钟预告
用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。5分钟预告
解方程难吗?如果你知道如何分离一个变量,你就成功了一半。另一半呢?不要做任何破坏等式平衡的事情。加入我们勇敢的变量朋友,当他遇到代数方程和一个(有时暴躁的)等号。稍加练习,你会发现解方程一点也不棘手。5分钟预告
用数轴上的动态箭头解一个包含小数的方程。5分钟预告
选择正确的步骤来求解给定变量的公式。使用反馈来诊断不正确的步骤。5分钟预告
选择正确的步骤来解一个两步方程。使用反馈来诊断不正确的步骤。5分钟预告
(框架文本):在一个变量中求解方程和不等式。
A.REI。3:解决方程和不等式在一个变量。
A.REI.3。答:求解单变量方程和文字方程,突出感兴趣的变量。
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。5分钟预告
使用动态三角形来探索三角形的区域。在动画的帮助下,看到任何三角形总是平行四边形的一半(具有相同的底和高)。同样,一个类似的动画显示了平行四边形和矩形之间的联系。5分钟预告
用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。5分钟预告
用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。5分钟预告
解方程难吗?如果你知道如何分离一个变量,你就成功了一半。另一半呢?不要做任何破坏等式平衡的事情。加入我们勇敢的变量朋友,当他遇到代数方程和一个(有时暴躁的)等号。稍加练习,你会发现解方程一点也不棘手。5分钟预告
用数轴上的动态箭头解一个包含小数的方程。5分钟预告
选择正确的步骤来求解给定变量的公式。使用反馈来诊断不正确的步骤。5分钟预告
选择正确的步骤来解一个两步方程。使用反馈来诊断不正确的步骤。5分钟预告
A.REI.3。b:解决一个变量的复合不等式,包括绝对值不等式。
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。5分钟预告
探索两个不等式的图形,找到它们的并集或交点。确定不等式的端点和复合不等式的端点之间的关系。5分钟预告
解决一个变量的一步不等式。把解画在数轴上。5分钟预告
A.REI.3.c:解简单的指数方程,只依赖于指数定律的应用(将解指数方程限制在那些不需要对数就能解的方程)。例如:5ˣ= 125或2ˣ= 1/16。
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
(框架文本):解方程组。以学生在中学时绘制和求解线性方程组的经验为基础。包括两个方程描述同一条直线产生无穷多个解的情况,以及两个方程描述平行线产生无解的情况;连接到GPE.5,它要求学生证明平行线的斜率标准。
A.REI。5:证明,给定一个由两个变量的两个方程组成的方程组,用一个方程的和和另一个方程的倍数来代替一个方程,得到一个具有相同解的方程组。
用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
(x,y)点是一个方程的解,或两个方程组的解。5分钟预告
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
A.REI。6:精确地和近似地解决线性方程系统(数值,代数,图形),重点是两个变量的线性方程对。
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。5分钟预告
探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x,y)指向一个方程或方程组的解。5分钟预告
用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
(x,y)点是一个方程的解,或两个方程组的解。5分钟预告
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
(框架文本):图形化地表示和解决方程和不等式。
A.REI。10:理解双变量方程的图形是在坐标平面上绘制的所有解的集合,通常形成一条曲线(也可以是一条直线)。
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。5分钟预告
将椭圆的方程与其图形进行比较。改变椭圆方程的项,并检查图形如何响应变化。拖动顶点和焦点,探索它们的勾股定理关系,并发现string属性。5分钟预告
将双曲线方程与其图形进行比较。改变双曲线方程的项。检查双曲线及其渐近线的图形如何响应变化。5分钟预告
探索抛物线在一个圆锥截面上下文中。找出抛物线的顶点、焦点和准线之间的关系,以及它们与方程之间的关系。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
A.REI。11:解释为什么方程y = f(x)和y = g(x)的图形相交点的x坐标是方程f(x) = g(x)的解;求近似解;例如,利用技术绘制函数图,制作数值表,或寻找连续逼近。包括f(x)和/或g(x)是线性和指数函数的情况。
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。5分钟预告
探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x,y)指向一个方程或方程组的解。5分钟预告
用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
(x,y)点是一个方程的解,或两个方程组的解。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
A.REI。12:将两个变量的线性不等式的解画成半平面(在严格不等式的情况下不包括边界),并将两个变量的线性不等式系统的解集画成相应半平面的交集。
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。5分钟预告
利用可行域图求目标函数的最大值或最小值。改变目标函数的系数,改变约束条件。探索可行域的图是如何响应变化的。5分钟预告
将线性不等式系统与其图进行比较。改变系统中的系数和不等式符号,并探索边界线、阴影区域和阴影区域的交集如何响应变化。5分钟预告
F::函数
F.IF:解释线性和指数函数
(框架文本):理解线性函数或指数函数的概念,并使用函数符号。将等差数列和几何数列作为线性函数和指数函数的例子。
F.IF。1:理解从一个集合(称为定义域)到另一个集合(称为范围)的函数给定义域的每个元素赋值恰好是范围中的一个元素。如果f是一个函数,x是它的定义域的一个元素,那么f(x)表示f的输出对应于输入x。f的图形是方程y = f(x)的图形。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
使用映射图、有序对或关系图确定关系是否是函数。将箭头从域拖到范围,键入有序的对,或将点拖到图中,以便向关系添加输入和输出。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
探索抛物线在一个圆锥截面上下文中。找出抛物线的顶点、焦点和准线之间的关系,以及它们与方程之间的关系。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
F.IF。2:使用函数表示法,在其域中计算输入函数,并根据上下文解释使用函数表示法的语句。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
(框架文本):根据上下文解释应用程序中出现的线性或指数函数。
F.IF。4:对于一个为两个量之间的关系建模的函数,用量来解释图和表的关键特征,并给出关系的口头描述来绘制显示关键特征的图形。主要功能包括拦截;函数递增、递减、正或负的区间;相对最大值和最小值;对称性;结束行为。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
将有理函数的方程与其图进行比较。分子和分母乘以或除以线性因子,并探索图形如何响应变化。5分钟预告
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
F.IF。5:将函数的定义域与其图联系起来,并在适用的情况下与它所描述的定量关系联系起来。
将有理函数的方程与其图进行比较。分子和分母乘以或除以线性因子,并探索图形如何响应变化。5分钟预告
使用映射图、有序对或关系图确定关系是否是函数。将箭头从域拖到范围,键入有序的对,或将点拖到图中,以便向关系添加输入和输出。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
将有理函数的图与其方程作比较。改变方程的项,并探索图形是如何被平移和拉伸的。在数轴上检查定义域,并将其与方程的图形进行比较。5分钟预告
F.IF。6:计算和解释一个函数(以符号形式或表格形式表示)在指定时间间隔内的平均变化率。从图表中估计变化率。
创建一个跑步者位置与时间的图表,并观察跑步者完成40码冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
创建一个跑步者的位置与时间的图表,并观察跑步者根据你所做的图表跑40码。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
(框架文本)::分析线性或指数函数使用不同的表示。
F.IF。7:图形函数用符号表示,并显示图形的关键特征,在简单的情况下手工表达,在更复杂的情况下使用技术。
F.IF.7。a:绘制线性函数图并显示截距。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
创建一个多项式作为线性因子的乘积。改变线性因子中的值,看看它们与函数根的关系。5分钟预告
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。5分钟预告
F.IF.7。e::图形指数函数,显示拦截和结束行为。
将余弦函数图与单位圆上的夹角图作比较。沿着余弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
改变对数函数方程中的值,并检查图形是如何转换或缩放的。将这些变换与函数的定义域,以及图中的渐近线联系起来。5分钟预告
将正弦函数图与单位圆上的夹角图作比较。沿着正弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
将正切函数图与单位圆上的夹角图进行比较。沿着切线拖动一点,在单位圆上看到对应的角度。5分钟预告
用正弦或余弦函数的图形做实验。探索如何改变方程中的值可以平移或缩放函数的图形。5分钟预告
F.IF。9:比较两个函数的性质,每个函数都以不同的方式表示(代数、图形、表格中的数字或口头描述)。例如,比较两个线性函数或两个指数函数(如yϓⁿ和y×2ⁿ)的增长。
将有理函数的方程与其图进行比较。分子和分母乘以或除以线性因子,并探索图形如何响应变化。5分钟预告
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
F.BF:建立线性或指数函数
构建一个线性或指数函数来模拟两个量之间的关系。
F.BF。1:写一个函数来描述两个量之间的关系。
F.BF.1。a::从上下文确定显式表达式、递归过程或计算步骤。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
(框架文本)::从现有函数构建新函数。
F.BF。3::识别用f(x) + k替换f(x)对图的影响,对于k的特定值(正负);求给定图的k的值。将线性函数的垂直平移与其y截距联系起来。用案例进行实验,并使用技术说明对图的影响的解释。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
改变对数函数方程中的值,并检查图形是如何转换或缩放的。将这些变换与函数的定义域,以及图中的渐近线联系起来。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
将有理函数的图与其方程作比较。改变方程的项,并探索图形是如何被平移和拉伸的。在数轴上检查定义域,并将其与方程的图形进行比较。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
用正弦或余弦函数的图形做实验。探索如何改变方程中的值可以平移或缩放函数的图形。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。5分钟预告
F.LE:线性和指数
(框架文本):构造和比较线性和指数模型,并解决问题。
F.LE。1:区分可以用线性函数和指数函数建模的情况。
F.LE.1。a:证明线性函数在等区间上以等差增长;指数函数在相等的区间内以相等的因子增长。
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
调整变异常数,探索正变异函数或逆变异函数的曲线如何响应变化。比较直接变分函数和逆变分函数。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
F.LE.1。b:认识到一个量相对于另一个量在单位间隔内以恒定速率变化的情况。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
创建一个跑步者位置与时间的图表,并观察跑步者完成40码冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
创建一个跑步者的位置与时间的图表,并观察跑步者根据你所做的图表跑40码。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
F.LE.1.c:识别一种情况,在这种情况下,一种数量相对于另一种数量在单位间隔内以恒定的百分率增长或衰减。
药物处方必须仔细规划,以最大限度地提高效益,同时避免过量服用。在这个小发明中,你可以给病人一片或多片药丸,并随着时间的推移监测药物在体内的水平。根据病人的反应,确定理想的药物剂量。制定一个剂量表,使这些水平一直保持。有四种类型的药丸可供使用,每一种都有不同的释放模式和靶器官。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
研究放射性物质的衰变。半衰期和放射性原子的数量可以调整,并且可以观察到理论或随机衰变。可以使用动态图、条形图和表格直观地解释数据。确定两个样品同位素的半衰期以及随机生成半衰期的样品。5分钟预告
F.LE。2:构造线性和指数函数,包括等差和几何序列,给定一个图,一个关系的描述,或两个输入-输出对(包括从表中读取这些)。
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
F.LE。3:用图表来观察一个指数增长的量最终会超过线性增长的量。
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
(框架文本)::根据函数建模的情况解释函数表达式。
F.LE。5:根据上下文解释线性或指数函数中的参数。将指数函数限定为f(x) = bˣ+ k的形式。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
G:几何
G.CO:一致性
(框架文本):建立在学生的经验,从较早的年级刚性运动。
G.CO。1:知道角,圆,垂线,平行线,线段的精确定义,基于未定义的概念点,线,沿线的距离,圆弧的距离。
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。5分钟预告
用直尺和圆规构造相等的段和角。使用循序渐进的解释和反馈来加深对结构的理解。5分钟预告
用直尺和圆规画出平行线和垂线。使用循序渐进的解释和反馈来加深对结构的理解。5分钟预告
G.CO。2::表示转换在平面上使用,例如,透明度和几何软件;将转换描述为将平面上的点作为输入,并将其他点作为输出的函数。比较保留距离和角度的转换和不保留的转换(例如,平移和水平拉伸)。
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
重塑和调整一个图形的大小,并检查它的反射是如何变化的。移动反射线,探索反射是如何转换的。5分钟预告
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
G.CO。4:发展旋转,反射的定义,和翻译方面的角度,圆,垂线,平行线,和线段。
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
重塑和调整一个图形的大小,并检查它的反射是如何变化的。移动反射线,探索反射是如何转换的。5分钟预告
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
G.CO。5:给定一个几何图形和一个旋转,反射,或平移,绘制转换后的图形使用,例如,绘图纸,描图纸,或几何软件。指定将给定图形转移到另一个图形上的转换序列。指出几何概念中刚性运动的基础,如平移是指点沿平行于某一特定直线移动一定距离;旋转以指定的角度沿着圆弧移动物体。
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
重塑和调整一个图形的大小,并检查它的反射是如何变化的。移动反射线,探索反射是如何转换的。5分钟预告
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。5分钟预告
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
(框架文本):从刚性运动的角度理解一致性。刚性运动是同余定义的基础。从刚性运动的基本性质(它们保持距离和角度)来推断,这是没有证据的假设。刚性运动和它们的假设性质可以用来建立通常的三角形同余准则,然后可以用来证明其他定理。
G.CO。6:使用刚性运动的几何描述来变换图形,并预测给定刚性运动对给定图形的影响;给定两个图形,用刚体运动中同余的定义来判断它们是否同余。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。5分钟预告
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
折叠纸张并以某种方式切割,可以制作对称的六面雪花(类似于自然界中可以找到的雪花)或八面雪花(一种更简单的折叠方法)。这种模拟可以让你在使用实体纸之前,用各种大小的圆点或方点“剪刀”在电脑屏幕上切割虚拟纸张。5分钟预告
对两个三角形应用约束。然后拖动三角形的顶点,并确定哪些约束可以保证一致性。5分钟预告
重塑和调整一个图形的大小,并检查它的反射是如何变化的。移动反射线,探索反射是如何转换的。5分钟预告
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。5分钟预告
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
G.CO。第8题:解释三角形同余的标准(ASA, SAS和SSS)是如何从刚性运动的同余定义中遵循的。
对两个三角形应用约束。然后拖动三角形的顶点,并确定哪些约束可以保证一致性。5分钟预告
(框架文本):制作几何结构。
G.CO。12:用各种工具和方法(指南针和直尺、绳子、反射装置、折纸、动态几何软件等)制作正式的几何结构。强调形式化和捍卫这些结构如何产生所需对象的能力。
用直尺和圆规构造相等的段和角。使用循序渐进的解释和反馈来加深对结构的理解。5分钟预告
用直尺和圆规画出平行线和垂线。使用循序渐进的解释和反馈来加深对结构的理解。5分钟预告
探索位于线段垂直平分线上的点和位于角平分线上的点的特殊性质。操作点、线段和角度,看看这些属性是否始终为真。5分钟预告
G.CO。13:构造一个等边三角形、一个正方形和一个正六边形,并把它嵌在一个圆里。强调形式化和捍卫这些结构如何产生所需对象的能力。
使用可以调整大小和重塑的三角形,探索垂直平分线、内界线圆、角平分线、内切圆、高度和中位数之间的关系。5分钟预告
调整圆弧内夹角的大小。研究圆周角与其截弧之间的关系。5分钟预告
G.GPE::用方程式表达几何性质
用坐标代数证明简单的几何定理。
G.GPE。7:使用坐标来计算多边形的周长和三角形和矩形的面积;例如,把勾股定理和距离公式联系起来。
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。5分钟预告
探索距离公式作为毕达哥拉斯定理的应用。学会把任意两点看作直角三角形斜边的端点。拖动这些点并检查三角形和距离计算的变化。5分钟预告
学生:统计与概率
S.ID:解释分类和定量数据
(框架文本):总结,表示和解释单个计数或测量变量的数据。
S.ID。1:用实数线上的图(点图、直方图和盒图)表示数据。
构造一个盒须图来匹配线状图,并构造一个线状图来匹配盒须图。操作线形图并检查盒须图如何变化。然后操作盒须图并检查线形图如何变化。5分钟预告
更改数据集中的值,并检查动态直方图如何响应变化。调整直方图的间隔大小,并查看直方图的形状如何受到影响。5分钟预告
建立一个数据集并找到平均值、中位数和众数。探索以跷跷板上的青蛙、秤上的青蛙和堆叠在可变高度杆下的青蛙为例说明的平均值、中位数和模式。5分钟预告
S.ID。2:使用适合于数据分布形状的统计数据来比较两个或多个不同数据集的中心(中位数,平均值)和散布(四分位范围,标准偏差)。
构造一个盒须图来匹配线状图,并构造一个线状图来匹配盒须图。操作线形图并检查盒须图如何变化。然后操作盒须图并检查线形图如何变化。5分钟预告
通过图来研究数据集的平均值、中位数、模态和范围。操作数据并观察平均值、中位数、模式和范围如何变化(或者在某些情况下,如何保持不变)。5分钟预告
试着每2秒点击一次鼠标。记录每次点击之间的时间间隔,以及误差和百分比误差。数据可以以表格、直方图或散点图的形式显示。当收集大量数据时,观察和测量结果分布的特征。5分钟预告
当视觉或听觉刺激出现时,通过尽可能快地点击鼠标来测量你的反应时间。记录单个响应时间,以及每个测试的平均值和标准偏差。数据的直方图显示了视觉和声音响应时间的总体趋势。测试的类型以及使用的符号和声音由用户选择。5分钟预告
S.ID。3:在数据集上下文中解释形状、中心和分布的差异,解释极端数据点(异常值)的可能影响。计算一个分布的加权平均,并将其解释为中心的度量。
构造一个盒须图来匹配线状图,并构造一个线状图来匹配盒须图。操作线形图并检查盒须图如何变化。然后操作盒须图并检查线形图如何变化。5分钟预告
通过图来研究数据集的平均值、中位数、模态和范围。操作数据并观察平均值、中位数、模式和范围如何变化(或者在某些情况下,如何保持不变)。5分钟预告
用你自己的判断为散点图中的数据拟合一条线。然后比较最佳拟合的最小二乘线。5分钟预告
建立一个数据集并找到平均值、中位数和众数。探索以跷跷板上的青蛙、秤上的青蛙和堆叠在可变高度杆下的青蛙为例说明的平均值、中位数和模式。5分钟预告
比较从总体分布中抽取的样本分布。基于样本分布预测总体分布的特征,并检查一个小样本如何代表给定的总体。5分钟预告
通过抓住掉落的尺子或点击目标来测试你的反应时间。创建一个实验结果的数据集,并计算数据的范围、模式、中位数和平均值。数据可以显示在列表、表格、柱状图或点阵图上。反应时间1学生探索的重点是范围,模式和中位数。5分钟预告
通过抓住掉落的尺子或点击目标来测试你的反应时间。创建一个实验结果的数据集,并计算数据的范围、模式、中位数和平均值。数据可以显示在列表、表格、柱状图或点阵图上。反应时间2学生探索的重点是平均。5分钟预告
试着每2秒点击一次鼠标。记录每次点击之间的时间间隔,以及误差和百分比误差。数据可以以表格、直方图或散点图的形式显示。当收集大量数据时,观察和测量结果分布的特征。5分钟预告
构建一个数据集,并将数据集的折线图与茎叶图进行比较。5分钟预告
(框架文本):总结、表示和解释两个分类和定量变量的数据。
S.ID。6:在散点图上表示两个定量变量的数据,并描述变量之间的关系。
S.ID.6。a::拟合数据的线性函数;使用适合于数据的函数来解决数据上下文中的问题。使用给定的函数,或选择上下文建议的函数。强调线性和指数模型。
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。5分钟预告
用你自己的判断为散点图中的数据拟合一条线。然后比较最佳拟合的最小二乘线。5分钟预告
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。5分钟预告
检查具有负相关或正相关的随机数据集的散点图。改变相关性并探索相关性如何反映在散点图和趋势线中。5分钟预告
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。5分钟预告
S.ID.6。b:通过绘制和分析残差非正式地评估函数的拟合。关注线性模型适用的情况。
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。5分钟预告
用你自己的判断为散点图中的数据拟合一条线。然后比较最佳拟合的最小二乘线。5分钟预告
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。5分钟预告
检查具有负相关或正相关的随机数据集的散点图。改变相关性并探索相关性如何反映在散点图和趋势线中。5分钟预告
S.ID.6.c::为建议线性关联的散点图拟合线性函数。
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。5分钟预告
用你自己的判断为散点图中的数据拟合一条线。然后比较最佳拟合的最小二乘线。5分钟预告
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。5分钟预告
检查具有负相关或正相关的随机数据集的散点图。改变相关性并探索相关性如何反映在散点图和趋势线中。5分钟预告
(框架文本):用线性关系解释建立在学生作业上的线性模型,并介绍相关系数。
S.ID。7:在数据的背景下解释线性模型的斜率(变化率)和截距(常数项)。
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
S.ID。8:计算(使用技术)并解释线性拟合的相关系数。
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。5分钟预告