这种相关性列出了该州课程标准推荐的小发明。点击下面的任何Gizmo标题了解更多信息。
P.MP:数学实践
P.MP。他说:认识问题,并坚持解决问题。
从给定的定义中使用词块来做一个双条件语句。使用符号形式和标准英语形式。5分钟预告
根据给定的事实,用词块做一个条件语句。使用符号形式和标准英语形式。5分钟预告
调整湖中要标记的鱼的数量和要重新捕获的鱼的数量。用捕获的带标签的鱼的数量来估计湖里的鱼的数量。5分钟预告
在模式翻转狂欢游戏中,你会看到纸牌的模式。第一张卡片是朝上的,这样你就可以看到图案,剩下的卡片是朝下的。你能猜出面朝下的卡片上有哪些动物吗?使用预设模式之一,或制作自己的自定义模式。好运!5分钟预告
P.MP。2:抽象的和定量的原因。
根据给定的事实,用词块做一个条件语句。使用符号形式和标准英语形式。5分钟预告
调整湖中要标记的鱼的数量和要重新捕获的鱼的数量。用捕获的带标签的鱼的数量来估计湖里的鱼的数量。5分钟预告
P.MP。3:构建可行的论点并批评他人的推理。
从给定的定义中使用词块来做一个双条件语句。使用符号形式和标准英语形式。5分钟预告
P.MP。4:用数学建模。
用面积模型估计两个分数的和或差。将估算值与准确的总和和差异进行比较。5分钟预告
P.MP。5:有策略地使用适当的工具。
计算两个模拟时钟给出的时间之差。旋转时钟的指针来改变时间,看看计算是如何变化的。5分钟预告
P.MP。6:注意精度。
从给定的定义中使用词块来做一个双条件语句。使用符号形式和标准英语形式。5分钟预告
使用面积模型建模和比较分数、小数和百分比。每个区域模型可以有10个或100个部分,可以设置为显示分数、小数或百分比。单击区域模型内部以使其着色。比较数字的视觉或数轴。5分钟预告
将代数表达式翻译成英语短语,并将英语短语翻译成代数表达式。阅读表达式或短语并选择单词瓦格或符号瓦格以形成相应的短语或短语。5分钟预告
P.MP。7:寻找并利用结构。
在模式翻转狂欢游戏中,你会看到纸牌的模式。第一张卡片是朝上的,这样你就可以看到图案,剩下的卡片是朝下的。你能猜出面朝下的卡片上有哪些动物吗?使用预设模式之一,或制作自己的自定义模式。好运!5分钟预告
P.MP。8:在反复的推理中寻找并表达规律性。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
构建一个模式来完成一个模式序列。研究网格中三种正方形图案的序列,并在网格中构建该序列的第四个图案。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
观察青蛙在彩色的睡莲叶子上跳来跳去。发现、测试和推理你所看到的它们跳跃的模式。5分钟预告
在模式翻转狂欢游戏中,你会看到纸牌的模式。第一张卡片是朝上的,这样你就可以看到图案,剩下的卡片是朝下的。你能猜出面朝下的卡片上有哪些动物吗?使用预设模式之一,或制作自己的自定义模式。好运!5分钟预告
N:数量和数量
N.VM:向量和矩阵的数量
(框架文本)::用矢量表示和建模。
N.VM。1:认识矢量有大小和方向。用有向线段表示矢量,并使用适当的符号表示矢量及其大小(例如,v, |v|, ||v||, v)。
移动、旋转和调整平面中的两个向量的大小。用图形和直接计算的方法求出它们的结果。5分钟预告
操作两个向量的大小和方向,以生成和并学习向量相加。可以显示x和y分量,以及两个向量的点积。5分钟预告
N.VM。2:求一个矢量的分量,方法是用终点的坐标减去起点的坐标。
操作两个向量的大小和方向,以生成和并学习向量相加。可以显示x和y分量,以及两个向量的点积。5分钟预告
N.VM。3:解决涉及速度和其他可以用向量表示的量的问题。
用两个无摩擦的冰球研究二维弹性碰撞。每个冰球的质量、速度和初始位置都可以修改,以创建各种场景。5分钟预告
试着通过调整高尔夫球的速度和发射角度来一杆进洞。探索弹丸运动的物理摩擦或理想设置。水平和垂直速度矢量可以显示,以及球的路径。高尔夫球手的高度和重力也可以调节。5分钟预告
(框架文本)::对向量进行操作。
N.VM。4::加法和减法向量。
N.VM。4.a::向量首尾相连,分量相加,并通过平行四边形规则。要知道两个向量的和的大小通常不是大小的和。
移动、旋转和调整平面中的两个向量的大小。用图形和直接计算的方法求出它们的结果。5分钟预告
操作两个向量的大小和方向,以生成和并学习向量相加。可以显示x和y分量,以及两个向量的点积。5分钟预告
N.VM。4.b:给定两个矢量的大小和方向,确定它们和的大小和方向。
移动、旋转和调整平面中的两个向量的大小。用图形和直接计算的方法求出它们的结果。5分钟预告
操作两个向量的大小和方向,以生成和并学习向量相加。可以显示x和y分量,以及两个向量的点积。5分钟预告
N.VM。4.c:将向量减法v - w理解为v + (- w),其中- w是w的加性逆,与w大小相同,指向相反的方向。通过以适当的顺序连接尖端图形化地表示矢量减法,并按分量执行矢量减法。
移动、旋转和调整平面中的两个向量的大小。用图形和直接计算的方法求出它们的结果。5分钟预告
操作两个向量的大小和方向,以生成和并学习向量相加。可以显示x和y分量,以及两个向量的点积。5分钟预告
N.VM。5:一个向量乘以一个标量。
N.VM.5。a::通过缩放向量并可能反转它们的方向来图形化地表示标量乘法;按分量执行标量乘法,例如,c(vx, vy) = (cvx, cvy)。
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
操作两个向量的大小和方向,以生成和并学习向量相加。可以显示x和y分量,以及两个向量的点积。5分钟预告
N.VM.5。b::使用||cv|| = |c|v计算标量倍数cv的大小。计算cv的方向,知道当|c|v≠0时,cv的方向要么是沿v(对于c > 0),要么是沿vs(对于c < 0)。
操作两个向量的大小和方向,以生成和并学习向量相加。可以显示x和y分量,以及两个向量的点积。5分钟预告
复数系统
(框架文本)::对复数进行算术运算。
N.CN。3:求复数的共轭;用共轭求复数的模和商。
确定复平面上一点的虚坐标和实坐标。在平面上拖动点,并研究坐标如何相应变化。5分钟预告
(框架文本)::表示复数及其在复平面上的运算。
N.CN。4:用矩形和极坐标形式(包括实数和虚数)表示复平面上的复数,并解释为什么给定复数的矩形和极坐标形式表示相同的数。
确定复平面上一点的虚坐标和实坐标。在平面上拖动点,并研究坐标如何相应变化。5分钟预告
在多项式恒等式和方程中使用复数。
N.CN。10:用极坐标形式乘复数,用DeMoivre定理求复数的根。
确定复平面上一点的虚坐标和实坐标。在平面上拖动点,并研究坐标如何相应变化。5分钟预告
答:代数
A.REI:用方程和不等式进行推理
(框架文本):解方程组。
A.REI.8。将线性方程组表示为向量变量中的单个矩阵方程。。
探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x,y)指向一个方程或方程组的解。5分钟预告
A.REI.9。找到一个矩阵的逆,如果它存在,并使用它来求解线性方程组(使用3 × 3或更大维矩阵的技术)。
探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x,y)指向一个方程或方程组的解。5分钟预告
F::函数
F.IF:口译功能
(框架文本)::分析使用不同表示的函数。
F.IF。7:图形函数用符号表示,并显示图形的关键特征,在简单的情况下用手工,在更复杂的情况下使用技术。
F.IF.7。d:绘制有理函数图,在适当的因式分解可用时识别零点、渐近线和点不连续,并显示端点行为。
将有理函数的方程与其图进行比较。分子和分母乘以或除以线性因子,并探索图形如何响应变化。5分钟预告
将有理函数的图与其方程作比较。改变方程的项,并探索图形是如何被平移和拉伸的。在数轴上检查定义域,并将其与方程的图形进行比较。5分钟预告
F.IF。11:用代数、图形和数字表示级数。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
F.BF:建筑功能
(框架文本)::从现有函数构建新函数。
F.BF。4::求逆函数。
F.BF.4。b:通过复合验证一个函数是另一个函数的逆。
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
F.BF.4.c:从图或表中读取逆函数的值,假设该函数具有逆函数。
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
F.BF。5:理解指数和对数之间的反比关系,并利用这种关系解决涉及对数和指数的问题。
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
F.TF:三角函数
(框架文本):证明和应用三角恒等式。
F.TF。9:证明正弦,余弦,正切的加减法公式,并用它们来解决问题。
选择正确的步骤来简化一个三角函数。使用逐步反馈来诊断不正确的步骤。5分钟预告
选择正确的步骤来计算使用和和和差恒等式的三角表达式。使用逐步反馈来诊断不正确的步骤。5分钟预告
G:几何
G.GPE::用方程式表达几何性质
(框架文本)::在几何描述和圆锥截面方程之间进行转换。
G.GPE。第2题:求出给定焦点和准线的抛物线方程。
探索抛物线在一个圆锥截面上下文中。找出抛物线的顶点、焦点和准线之间的关系,以及它们与方程之间的关系。5分钟预告
G.GPE。3:根据到焦点的距离的和或差是常数的事实,推导出给定焦点的椭圆和双曲线方程。
将椭圆的方程与其图形进行比较。改变椭圆方程的项,并检查图形如何响应变化。拖动顶点和焦点,探索它们的勾股定理关系,并发现string属性。5分钟预告
将双曲线方程与其图形进行比较。改变双曲线方程的项。检查双曲线及其渐近线的图形如何响应变化。5分钟预告
S:统计
条件概率与概率规则
(框架文本):理解独立性和条件概率,并使用它们来解释数据。
S.CP。2:理解如果A和B一起发生的概率是它们的概率的乘积,那么两个事件A和B是独立的,并使用这个特征来确定它们是否独立。
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。5分钟预告
S.CP。3:将A给定B的条件概率理解为P(A和B)/P(B),将A和B的独立性解释为A给定B的条件概率与B的概率相同。
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。5分钟预告
在统一概率模型中,使用概率规则计算复合事件的概率。
S.CP。8:在统一概率模型中应用一般乘法法则,P(a andB) = P(a)P(B| a) = P(B)P(a |B),并根据模型解释答案。
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。5分钟预告
S.CP。9:使用排列和组合来计算复合事件的概率并解决问题。
利用树形图、条形图和直接计算,找出二项实验中若干成功或失败的概率。5分钟预告
从一个盒子中随机选择一些字母的排列和组合。使用动态树形图、动态排列列表和计数原理的动态计算来计数排列和组合。5分钟预告