这种相关性列出了该州课程标准推荐的小发明。点击下面的任何Gizmo标题了解更多信息。
8.NS::数字系统
1.1:知道有些数是非有理数,用有理数近似它们。
8. ns。1:要知道非有理数被称为无理数。非正式地理解每个数字都有十进制展开;对于有理数,表明十进制展开式最终重复,并将最终重复的十进制展开式转换为有理数。
比较用面积表示的比率与百分数、分数和十进制形式。5分钟预告
比较用面积表示的量与其百分比、分数和十进制形式。5分钟预告
8. ns。2:使用无理数的有理近似值来比较无理数的大小,在数线图上大致定位它们,并估计表达式的值(例如,n²)。
8.表达式和方程
2.1::使用根号和整数指数。
8.情感表达。1:使用平方根和立方根符号表示x²= p和x³= p形式方程的解,其中p是正有理数。求解在0到15之间的整数完全平方的平方根和解在0到5之间的整数完全立方的立方根。要知道根号2是无理数。
确定使用激进表达式完成操作的正确步骤。使用逐步反馈来诊断不正确的步骤。5分钟预告
化简根式。使用逐步反馈来诊断任何不正确的步骤。5分钟预告
用面积模型探讨平方根的意义。用一个正方形的边长来求小数或整数的平方根。5分钟预告
8.情感表达。2:用一个数字乘以10的整数次方的形式来估计非常大或非常小的数量,并表示一个是另一个的几倍。
探索数字系统,并在位值列中使用计数器珠将数字从一个基数转换为另一个基数。5分钟预告
使用单位转换磁贴从一个单位转换到另一个单位。可以翻转磁贴来取消单位。在公制单位之间或在公制和美国习惯单位之间进行转换。解决距离、时间、速度、质量、体积和密度问题。5分钟预告
使用单位转换小发明探索科学计数法和有效数字的概念。将数字转换为科学计数法。确定测量值和计算中的有效位数。5分钟预告
8.情感表达。3:读和写用科学计数法表示的数字,包括同时使用十进制和科学计数法的问题。对于非常大或非常小的量的测量,使用科学计数法并选择适当大小的单位(例如,海底扩张使用毫米/年)。解释由技术产生的科学符号。
使用单位转换磁贴从一个单位转换到另一个单位。可以翻转磁贴来取消单位。在公制单位之间或在公制和美国习惯单位之间进行转换。解决距离、时间、速度、质量、体积和密度问题。5分钟预告
使用单位转换小发明探索科学计数法和有效数字的概念。将数字转换为科学计数法。确定测量值和计算中的有效位数。5分钟预告
2.2:理解比例关系、直线和线性方程之间的联系。
8.情感表达。4:图的比例关系,将其单位速率解释为图的斜率(m)。比较用不同方式表示的两种不同比例关系。
运用比率和比例计算出一个人在月球(或其他星球)上的重量。称地球上的物体和月球上的物体,称地球上的人。然后建立并求解地球重量与月球重量的比例。5分钟预告
调整变异常数,探索正变异函数或逆变异函数的曲线如何响应变化。比较直接变分函数和逆变分函数。5分钟预告
8.情感表达。5:使用相似三角形来解释为什么在坐标平面上非垂直线上的任何两个不同点之间的斜率(m)是相同的,并扩展到包括斜率公式的使用(m = (y2 - y1)/(x2 - x1)当给定两个坐标点(x1, y1)和(x2, y2))。对于经过原点的直线,生成方程y = mx(成正比);对于斜率为m的直线,在y轴截距为b处与纵轴截距为b(当b不等于0时,不成正比),生成方程y = mx + b。
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
探索一条直线的斜率,并学习如何计算斜率。通过移动直线上的点来调整直线,并观察其斜率的变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
2.3:分析和解决线性方程和不等式。
8.情感表达。7:流利(高效,准确,灵活)解决一个变量中的一步,两步和多步线性方程和不等式,包括等号两边出现相同变量的情况。
8.情感表达。7a:给出一个变量线性方程的一个解(x = a)、无穷多个解(a = a)或无解(a = b)的例子。通过依次将给定方程转换为更简单的形式,直到得到x = a、a = a或a = b形式的等价方程(其中a和b是不同的数字),来说明哪种情况是这样的。
用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。5分钟预告
用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。5分钟预告
解方程难吗?如果你知道如何分离一个变量,你就成功了一半。另一半呢?不要做任何破坏等式平衡的事情。加入我们勇敢的变量朋友,当他遇到代数方程和一个(有时暴躁的)等号。稍加练习,你会发现解方程一点也不棘手。5分钟预告
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。5分钟预告
用数轴上的动态箭头解一个包含小数的方程。5分钟预告
选择正确的步骤来解一个两步方程。使用反馈来诊断不正确的步骤。5分钟预告
8.情感表达。7b:求解具有有理数系数的线性方程和不等式,包括需要使用分配律和收集同类项展开和/或分解表达式的方程/不等式。
用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。5分钟预告
解方程难吗?如果你知道如何分离一个变量,你就成功了一半。另一半呢?不要做任何破坏等式平衡的事情。加入我们勇敢的变量朋友,当他遇到代数方程和一个(有时暴躁的)等号。稍加练习,你会发现解方程一点也不棘手。5分钟预告
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。5分钟预告
解决一个变量的一步不等式。把解画在数轴上。5分钟预告
8.F::函数
3.1:定义、评估和比较函数。
8. f。1:解释函数是为每个输入分配一个输出的规则。函数的图是由输入和相应的输出组成的有序对的集合。(8年级不需要函数表示法。)
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
使用映射图、有序对或关系图确定关系是否是函数。将箭头从域拖到范围,键入有序的对,或将点拖到图中,以便向关系添加输入和输出。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
8. f。2:比较两个线性函数的性质,以各种方式表示(代数,图形,数字表,或通过口头描述)。
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
8. f。3:将方程y = mx + b解释为定义一个线性函数,其图形是一条直线;给出非线性函数的例子。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
3.2::使用函数来模拟数量之间的关系。
8. f。4:构造一个函数来模拟两个量之间的线性关系。从关系描述或两个(x, y)值中确定函数的变化率和初始值,包括从表或图中读取这些值。解释线性函数的变化率和初始值,根据它所模拟的情况,根据它的图形或值表。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
8. f。5:通过分析图形定性地描述两个量之间的函数关系(例如,函数是增加或减少的,线性或非线性的)。画一个图表来展示已经被口头描述过的功能的定性特征。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
8.G:几何
4.1:几何测量:了解角度的概念并测量角度。
8. g。1:认识角度的几何形状,形成的任何两个射线共享一个共同的端点,并理解角度测量的概念:
8. g。1b:转动n个1度角的角的度数是n度。
测量三角形的内角并求出它们的和。检查是否所有三角形的和都是一样的。此外,还将了解外角的测量与内角测量的关系。5分钟预告
8. g。4:在多步问题中使用关于补角、补角、对角和邻角的事实来编写并使用它们来求解图中未知角的简单方程。
利用动态图形探索互补角、互补角、垂直角和邻角的性质。5分钟预告
测量三角形的内角并求出它们的和。检查是否所有三角形的和都是一样的。此外,还将了解外角的测量与内角测量的关系。5分钟预告
8. g。5:使用非正式的论证来建立关于三角形的角和和外角,关于平行线被截线所产生的角,以及三角形相似度的角-角准则。
利用动态图形探索互补角、互补角、垂直角和邻角的性质。5分钟预告
在约束条件下研究三角形的图形。确定哪些约束条件可以保证等腰三角形或等边三角形。5分钟预告
通过将多边形分成多个三角形并将它们的角相加,求出多边形的角之和。改变边的数量,并确定角度的和如何变化。将多边形展开,看看总和是不变的。5分钟预告
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。5分钟预告
在斜边的高度上除以一个直角三角形,得到两个相似的直角三角形。探索两个三角形之间的关系。5分钟预告
测量三角形的内角并求出它们的和。检查是否所有三角形的和都是一样的。此外,还将了解外角的测量与内角测量的关系。5分钟预告
4.2:理解和应用勾股定理。
8. g。第7章:解释毕达哥拉斯定理和它的反面的证明。
用动态直角三角形探索勾股定理。利用三角形边长正方形的面积,研究毕达哥拉斯定理的一个直观的几何应用。5分钟预告
在交互式地理定位板中构建直角三角形,并在三角形的两侧构建正方形,以发现勾股定理。5分钟预告
8. g。8:应用毕达哥拉斯定理在现实世界和二维和三维数学问题中确定直角三角形的未知边长。
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。5分钟预告
探索距离公式作为毕达哥拉斯定理的应用。学会把任意两点看作直角三角形斜边的端点。拖动这些点并检查三角形和距离计算的变化。5分钟预告
用动态直角三角形探索勾股定理。利用三角形边长正方形的面积,研究毕达哥拉斯定理的一个直观的几何应用。5分钟预告
在交互式地理定位板中构建直角三角形,并在三角形的两侧构建正方形,以发现勾股定理。5分钟预告
改变金字塔或锥体的尺寸,研究表面积如何变化。利用固体的动态网络来计算固体的横向面积和表面积。5分钟预告
8. g。9:应用勾股定理求坐标系中两点之间的距离。
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。5分钟预告
探索距离公式作为毕达哥拉斯定理的应用。学会把任意两点看作直角三角形斜边的端点。拖动这些点并检查三角形和距离计算的变化。5分钟预告
用动态直角三角形探索勾股定理。利用三角形边长正方形的面积,研究毕达哥拉斯定理的一个直观的几何应用。5分钟预告
4.3:解决涉及测量的现实问题和数学问题。
8. g。10:使用公式或非正式的推理来找出弧长,扇形的面积,金字塔,圆锥和球体的表面积和体积。
调整圆弧内夹角的大小。研究圆周角与其截弧之间的关系。5分钟预告
改变金字塔或锥体的高度和底边或半径长度,并检查其三维表示如何变化。确定基底的面积和固体的体积。将倾斜金字塔或锥体的体积与右金字塔或锥体的体积进行比较。5分钟预告
改变棱镜或圆柱体的尺寸,研究表面积如何变化。利用固体的动态网络来计算固体的横向面积和表面积。5分钟预告
改变金字塔或锥体的尺寸,研究表面积如何变化。利用固体的动态网络来计算固体的横向面积和表面积。5分钟预告
8. g。11:研究三维几何形状公式之间的关系;;
8. g。11a:推广金字塔和锥的体积公式(V = 1/3 Bh)。
改变金字塔或锥体的高度和底边或半径长度,并检查其三维表示如何变化。确定基底的面积和固体的体积。将倾斜金字塔或锥体的体积与右金字塔或锥体的体积进行比较。5分钟预告
8. g。11b:推广锥体和锥体的表面积公式(SA = B + 1/2 Pl)。
改变棱镜或圆柱体的尺寸,研究表面积如何变化。利用固体的动态网络来计算固体的横向面积和表面积。5分钟预告
改变金字塔或锥体的尺寸,研究表面积如何变化。利用固体的动态网络来计算固体的横向面积和表面积。5分钟预告
8. g。12:解决现实世界和数学问题,涉及弧长,包括扇形在内的二维形状的面积,包括金字塔,锥体和球体在内的三维物体的体积和表面积。
检查和操作一个平行四边形并求出它的面积。使用动画探索平行四边形的面积和矩形面积之间的关系。5分钟预告
使用动态三角形来探索三角形的区域。在动画的帮助下,看到任何三角形总是平行四边形的一半(具有相同的底和高)。同样,一个类似的动画显示了平行四边形和矩形之间的联系。5分钟预告
使用Chocomatic设计由巧克力方块制成的糖果棒。用乘法求出每个巧克力棒的方块数。建立巧克力棒的集合,它们都有相同数量的方块。把两块小巧克力棒连接成一块大巧克力棒,解决乘法题。5分钟预告
了解如何找到一个矩形的周长和面积,以及一个正方形(这实际上只是一个矩形的特殊情况)。5分钟预告
改变棱镜或圆柱体的高度和底边或半径长度,并检查其三维表示如何变化。确定基底的面积和固体的体积。将斜棱镜或圆柱的体积与右棱镜或圆柱的体积进行比较。5分钟预告
改变金字塔或锥体的高度和底边或半径长度,并检查其三维表示如何变化。确定基底的面积和固体的体积。将倾斜金字塔或锥体的体积与右金字塔或锥体的体积进行比较。5分钟预告
改变棱镜或圆柱体的尺寸,研究表面积如何变化。利用固体的动态网络来计算固体的横向面积和表面积。5分钟预告
改变金字塔或锥体的尺寸,研究表面积如何变化。利用固体的动态网络来计算固体的横向面积和表面积。5分钟预告
8.SP:统计和概率
5.1:调查双变量数据的关联模式。
8. sp。1:构建和解释二元测量数据的散点图,以调查两个量之间的关联模式。描述模式,如聚类、异常值、正关联或负关联、线性关联和非线性关联。
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。5分钟预告
用你自己的判断为散点图中的数据拟合一条线。然后比较最佳拟合的最小二乘线。5分钟预告
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。5分钟预告
检查具有负相关或正相关的随机数据集的散点图。改变相关性并探索相关性如何反映在散点图和趋势线中。5分钟预告
8. sp。2:要知道直线被广泛用于模拟两个定量变量之间的关系。对于表明线性关联的散点图,可以非正式地拟合一条直线,并通过判断数据点与直线的接近程度非正式地评估模型拟合。
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。5分钟预告
用你自己的判断为散点图中的数据拟合一条线。然后比较最佳拟合的最小二乘线。5分钟预告
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。5分钟预告
检查具有负相关或正相关的随机数据集的散点图。改变相关性并探索相关性如何反映在散点图和趋势线中。5分钟预告
8. sp。3:利用线性模型的方程在二元测量数据的背景下解决问题,解释斜率和截距。
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。5分钟预告
用你自己的判断为散点图中的数据拟合一条线。然后比较最佳拟合的最小二乘线。5分钟预告
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。5分钟预告
检查具有负相关或正相关的随机数据集的散点图。改变相关性并探索相关性如何反映在散点图和趋势线中。5分钟预告