这种相关性列出了该州课程标准推荐的小发明。点击下面的任何Gizmo标题了解更多信息。
G:几何学
GM: G-CO:一致性
通用汽车公司。A:在平面上做变换实验。
通用汽车:G-CO.A。1:知道角,圆,垂线,平行线,线段的精确定义,基于未定义的概念点,线,沿线的距离,圆弧的距离。
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。5分钟预告
用直尺和圆规构造相等的段和角。使用循序渐进的解释和反馈来加深对结构的理解。5分钟预告
用直尺和圆规画出平行线和垂线。使用循序渐进的解释和反馈来加深对结构的理解。5分钟预告
调整圆弧内夹角的大小。研究圆周角与其截弧之间的关系。5分钟预告
探索相交线、平行线、斜线以及平面上的线的性质。在三维空间中旋转平面和线条,以确保对这些物体的充分理解。5分钟预告
通用汽车:G-CO.A。2::表示转换在平面上使用,例如,透明,描摹纸,或几何软件;将转换描述为将平面上的点作为输入,并将其他点作为输出的函数。比较保留距离和角度的转换和不保留的转换(例如,平移和水平拉伸)。
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
重塑和调整一个图形的大小,并检查它的反射是如何变化的。移动反射线,探索反射是如何转换的。5分钟预告
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
通用汽车:G-CO.A。3:给定一个矩形,平行四边形,梯形,或正多边形,描述将其带入自身的旋转和反射。
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
重塑和调整一个图形的大小,并检查它的反射是如何变化的。移动反射线,探索反射是如何转换的。5分钟预告
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。5分钟预告
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。5分钟预告
通用汽车:G-CO.A。4:发展旋转,反射的定义,和翻译方面的角度,圆,垂线,平行线,和线段。
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。5分钟预告
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
重塑和调整一个图形的大小,并检查它的反射是如何变化的。移动反射线,探索反射是如何转换的。5分钟预告
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。5分钟预告
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
通用汽车:G-CO.A。5:给定一个几何图形和一个旋转,反射,或平移,绘制转换后的图形使用,例如,绘图纸,描图纸,或几何软件。指定将给定图形转移到另一个图形上的转换序列。
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
重塑和调整一个图形的大小,并检查它的反射是如何变化的。移动反射线,探索反射是如何转换的。5分钟预告
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。5分钟预告
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
通用汽车公司。B:从刚性运动的角度理解同余。
通用汽车:G-CO.B。6:使用刚性运动的几何描述来变换图形,并预测给定刚性运动对给定图形的影响;给定两个图形,用刚体运动中同余的定义来判断它们是否同余。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。5分钟预告
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
折叠纸张并以某种方式切割,可以制作对称的六面雪花(类似于自然界中可以找到的雪花)或八面雪花(一种更简单的折叠方法)。这种模拟可以让你在使用实体纸之前,用各种大小的圆点或方点“剪刀”在电脑屏幕上切割虚拟纸张。5分钟预告
对两个三角形应用约束。然后拖动三角形的顶点,并确定哪些约束可以保证一致性。5分钟预告
重塑和调整一个图形的大小,并检查它的反射是如何变化的。移动反射线,探索反射是如何转换的。5分钟预告
旋转、反射和平移平面上的图形。将翻译后的图与原始图进行比较。5分钟预告
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
通用汽车:G-CO.B。第8题:解释三角形同余的标准(ASA, SAS和SSS)是如何从刚性运动的同余定义中遵循的。
对两个三角形应用约束。然后拖动三角形的顶点,并确定哪些约束可以保证一致性。5分钟预告
证明和应用几何定理。
通用汽车:G-CO.C。9:证明并应用关于直线和角度的定理。定理包括:对顶角相等;当一条截线与平行线相交时,内错角相等,同位角相等;线段的垂线平分线上的点就是到线段端点等距的点。
对两个直角三角形应用约束。然后在这些条件下拖动它们的顶点。确定在什么条件下三角形是相等的。5分钟预告
利用动态图形探索互补角、互补角、垂直角和邻角的性质。5分钟预告
对两个三角形应用约束。然后拖动三角形的顶点,并确定哪些约束可以保证一致性。5分钟预告
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。5分钟预告
通用汽车:G-CO.C。10:证明并应用关于三角形的定理。定理包括:三角形内角和为180°的度量;等腰三角形的底角相等;三角形的两条边的中点连接段平行于第三条边和长度的一半;三角形的中线相交于一点。
在约束条件下研究三角形的图形。确定哪些约束条件可以保证等腰三角形或等边三角形。5分钟预告
对两个三角形应用约束。然后拖动三角形的顶点,并确定哪些约束可以保证一致性。5分钟预告
用动态直角三角形探索勾股定理。利用三角形边长正方形的面积,研究毕达哥拉斯定理的一个直观的几何应用。5分钟预告
在交互式地理定位板中构建直角三角形,并在三角形的两侧构建正方形,以发现勾股定理。5分钟预告
测量三角形的内角并求出它们的和。检查是否所有三角形的和都是一样的。此外,还将了解外角的测量与内角测量的关系。5分钟预告
发现与三角形边长和角度度量相关的不等式。重塑并调整三角形大小,以确认这些属性对所有三角形都是正确的。5分钟预告
通用汽车:G-CO.C。11:证明并应用关于平行四边形的定理。定理包括:对边相等,对角相等,平行四边形的对角线彼此平分,反之,矩形是对角线相等的平行四边形。
对动态四边形应用约束。然后拖动它的顶点。确定哪些约束条件保证四边形始终是平行四边形。5分钟预告
对平行四边形施加约束,并对得到的图形进行实验。在每种条件下,你能确定自己拥有哪种形状?5分钟预告
通用汽车公司。D:做几何构造。
通用汽车:G-CO.D。12:用各种工具和方法制作正式的几何结构,例如,指南针和直尺,绳子,反射装置,折纸,或动态几何软件。
用直尺和圆规构造相等的段和角。使用循序渐进的解释和反馈来加深对结构的理解。5分钟预告
用直尺和圆规画出平行线和垂线。使用循序渐进的解释和反馈来加深对结构的理解。5分钟预告
探索位于线段垂直平分线上的点和位于角平分线上的点的特殊性质。操作点、线段和角度,看看这些属性是否始终为真。5分钟预告
通用汽车:G-CO.D。13:构造一个等边三角形、一个正方形和一个正六边形,并把它嵌在一个圆里。
使用可以调整大小和重塑的三角形,探索垂直平分线、内界线圆、角平分线、内切圆、高度和中位数之间的关系。5分钟预告
调整圆弧内夹角的大小。研究圆周角与其截弧之间的关系。5分钟预告
GM: G-SRT::相似度,直角三角形和三角学
通用汽车:G-SRT。答:从相似度变换的角度来理解相似度。
通用汽车:G-SRT.A。1:实验验证由中心和比例因子给出的膨胀特性:
通用汽车:G-SRT.A.1。答:膨胀将一条不穿过膨胀中心的线变成平行线,并留下一条穿过膨胀中心的线不变。
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
通用汽车:G-SRT.A.1。b:线段的膨胀在比例因子给定的比例中是长是短。
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。5分钟预告
通用汽车:G-SRT.A。2:给定两张图,用相似度变换方面的相似度定义来判断它们是否相似;用相似度变换解释三角形相似度的含义:所有对应的角对相等,以及所有对应的边对成比例。
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。5分钟预告
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。5分钟预告
在斜边的高度上除以一个直角三角形,得到两个相似的直角三角形。探索两个三角形之间的关系。5分钟预告
通用汽车:G-SRT.A。3:利用相似变换的性质,建立两个三角形相似的AA准则。
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。5分钟预告
通用汽车:G-SRT。B:证明并应用涉及相似性的定理。
通用汽车:G-SRT.B。4:证明并应用关于三角形的定理。
用动态直角三角形探索勾股定理。利用三角形边长正方形的面积,研究毕达哥拉斯定理的一个直观的几何应用。5分钟预告
在交互式地理定位板中构建直角三角形,并在三角形的两侧构建正方形,以发现勾股定理。5分钟预告
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。5分钟预告
通用汽车:G-SRT.B。5:使用三角形的同余和相似标准来解决问题,并证明几何图形中的关系。
探索圆心角与其截弧之间的关系。同时探索和弦和它们到圆心的距离之间的关系。5分钟预告
对两个直角三角形应用约束。然后在这些条件下拖动它们的顶点。确定在什么条件下三角形是相等的。5分钟预告
用直尺和圆规构造相等的段和角。使用循序渐进的解释和反馈来加深对结构的理解。5分钟预告
放大一个图形并研究其调整大小的图像。查看缩放图形如何影响其顶点的坐标
(x, y)形式和矩阵形式。5分钟预告
操作两个相似的图形,改变比例因子,看看在相似的情况下可能发生什么变化。探究两个相似图形的周长和面积是如何比较的。5分钟预告
对两个三角形应用约束。然后拖动三角形的顶点,并确定哪些约束可以保证一致性。5分钟预告
改变图像的比例因子和旋转,并将其与原图像进行比较。确定两个图形的角度度量和边长之间的关系。5分钟预告
在斜边的高度上除以一个直角三角形,得到两个相似的直角三角形。探索两个三角形之间的关系。5分钟预告
GM: G-SRT.C:定义三角比率并解决涉及直角三角形的问题。
通用汽车:G-SRT.C。6:根据相似度,直角三角形的边比,包括特殊的直角三角形(30-60-90和45-45-90),是三角形中角的性质,这导致了锐角的三角比的定义。
在约束条件下研究三角形的图形。确定哪些约束条件可以保证等腰三角形或等边三角形。5分钟预告
重塑和调整一个直角三角形,并检查角a的正弦,角a的余弦和角a的正切是如何变化的。5分钟预告
通用汽车:G-SRT.C。8:在实际问题中使用三角比率和勾股定理求解直角三角形。
将余弦函数图与单位圆上的夹角图作比较。沿着余弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
探索距离公式作为毕达哥拉斯定理的应用。学会把任意两点看作直角三角形斜边的端点。拖动这些点并检查三角形和距离计算的变化。5分钟预告
用动态直角三角形探索勾股定理。利用三角形边长正方形的面积,研究毕达哥拉斯定理的一个直观的几何应用。5分钟预告
在交互式地理定位板中构建直角三角形,并在三角形的两侧构建正方形,以发现勾股定理。5分钟预告
将正弦函数图与单位圆上的夹角图作比较。沿着正弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
重塑和调整一个直角三角形,并检查角a的正弦,角a的余弦和角a的正切是如何变化的。5分钟预告
将正切函数图与单位圆上的夹角图进行比较。沿着切线拖动一点,在单位圆上看到对应的角度。5分钟预告
GM: G-C:圆圈
通用汽车:g c。答:理解并应用有关圆的定理。
通用汽车:G-C.A。2:确定并描述圆弧角、半径和弦之间的关系,包括以下内容:存在于圆弧角、圆弧角和边角之间的关系;直径上的圆周角是直角;圆的半径垂直于半径与圆的交点处的切线。
探索圆心角与其截弧之间的关系。同时探索和弦和它们到圆心的距离之间的关系。5分钟预告
调整圆弧内夹角的大小。研究圆周角与其截弧之间的关系。5分钟预告
通用汽车:G-C.A。第3题:构造三角形的内切圆和外切圆,证明圆内切圆中的四边形的角的性质。
使用可以调整大小和重塑的三角形,探索垂直平分线、内界线圆、角平分线、内切圆、高度和中位数之间的关系。5分钟预告
调整圆弧内夹角的大小。研究圆周角与其截弧之间的关系。5分钟预告
通用汽车:g c。B:求弧长和圆的扇形面积。
通用汽车:G-C.B。5:利用相似度来确定被一个角度拦截的弧的长度与半径成正比,并将角度的弧度度量定义为比例常数;推导出扇形面积的公式。
探索圆心角与其截弧之间的关系。同时探索和弦和它们到圆心的距离之间的关系。5分钟预告
GM: G-GPE::用方程表示几何性质
通用汽车:G-GPE。答:在几何描述和圆锥截面方程之间进行转换。
通用汽车:G-GPE.A。1:利用毕达哥拉斯定理推导出给定圆心和半径的圆的方程;完成这个正方形,求出由方程给出的圆的圆心和半径。
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。5分钟预告
探索距离公式作为毕达哥拉斯定理的应用。学会把任意两点看作直角三角形斜边的端点。拖动这些点并检查三角形和距离计算的变化。5分钟预告
用动态直角三角形探索勾股定理。利用三角形边长正方形的面积,研究毕达哥拉斯定理的一个直观的几何应用。5分钟预告
在交互式地理定位板中构建直角三角形,并在三角形的两侧构建正方形,以发现勾股定理。5分钟预告
通用汽车:G-GPE。B:用坐标代数证明简单的几何定理。
通用汽车:G-GPE.B。7:使用坐标来计算多边形的周长和三角形和矩形的面积,例如,使用距离公式。
探索距离公式作为毕达哥拉斯定理的应用。学会把任意两点看作直角三角形斜边的端点。拖动这些点并检查三角形和距离计算的变化。5分钟预告
GM: G-GMD:几何测量和尺寸
通用汽车:G-GMD。答:解释体积公式,并用它们来解决问题。
通用汽车:G-GMD.A。1:给出一个非正式的论证,例如,解剖论证,卡瓦列里原理,或非正式的极限论证,用于圆的周长公式;圆的面积;圆柱体、锥体和锥体的体积。
改变棱镜或圆柱体的高度和底边或半径长度,并检查其三维表示如何变化。确定基底的面积和固体的体积。将斜棱镜或圆柱的体积与右棱镜或圆柱的体积进行比较。5分钟预告
改变金字塔或锥体的高度和底边或半径长度,并检查其三维表示如何变化。确定基底的面积和固体的体积。将倾斜金字塔或锥体的体积与右金字塔或锥体的体积进行比较。5分钟预告
通用汽车:G-GMD.A。3:使用圆柱体,金字塔,锥体和球体的体积公式来解决问题。
改变棱镜或圆柱体的高度和底边或半径长度,并检查其三维表示如何变化。确定基底的面积和固体的体积。将斜棱镜或圆柱的体积与右棱镜或圆柱的体积进行比较。5分钟预告
改变金字塔或锥体的高度和底边或半径长度,并检查其三维表示如何变化。确定基底的面积和固体的体积。将倾斜金字塔或锥体的体积与右金字塔或锥体的体积进行比较。5分钟预告
GM:统计和概率
GM: S-CP::条件概率和概率规则
通用汽车:S-CP。答:理解独立性和条件概率,并用它们来解释数据。
通用汽车:S-CP.A。1:使用结果的特征(或类别)将事件描述为样本空间(结果集)的子集,或作为其他事件的并集、交叉或补充(“或”、“和”、“非”)。
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。5分钟预告
用旋流器进行实验,将特定结果的实验概率与理论概率进行比较。选择旋流器的数量,旋流器上的节数,以及旋流的有利结果。然后统计有利结果的数量。5分钟预告
用旋流器进行实验,将特定结果的实验概率与理论概率进行比较。选择旋流器的数量,旋流器上的节数,以及旋流的有利结果。然后统计有利结果的数量。5分钟预告
通用汽车:S-CP.A。2:理解如果A和B一起发生的概率是它们的概率的乘积,那么两个事件A和B是独立的,并使用这个特征来确定它们是否独立。
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。5分钟预告
通用汽车:S-CP.A。3:将A给定B的条件概率理解为P(A和B)/P(B),将A和B的独立性解释为A给定B的条件概率与A的概率相同,B给定A的条件概率与B的概率相同。
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。5分钟预告
通用汽车:S-CP.A。4:当两个类别与每个被分类的对象相关联时,构造和解释数据的双向频率表。使用双向表作为样本空间来决定事件是否独立,并近似条件概率。
更改数据集中的值,并检查动态直方图如何响应变化。调整直方图的间隔大小,并查看直方图的形状如何受到影响。5分钟预告
通用汽车:S-CP.A。5:在日常语言和日常情况中认识和解释条件概率和独立性的概念。
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。5分钟预告
通用汽车:S-CP。B:在统一概率模型中,使用概率规则计算复合事件的概率。
通用汽车:S-CP.B。6:找出A给定B的条件概率,即B的结果中也属于A的部分,并根据模型解释答案。
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。5分钟预告