这种相关性列出了该州课程标准推荐的小发明。点击下面的任何Gizmo标题了解更多信息。
答:代数
A-SSE:从表达中看结构
2.1.1:解释表达式的结构
A-SSE。2: : Use the structure of an expression to identify ways to rewrite it.
指数表达式的除法
选择正确的步骤来划分指数表达式。使用反馈来诊断不正确的步骤。 5分钟预告
等价代数表达式
不爽餐厅正在招人!作为这家水下小酒馆的新厨师,你将学习操作代数表达式的基本知识。学习如何使用交换性和结合性属性生成等价表达式,如何处理讨厌的减法和除法,以及如何识别等价和非等价表达式。 5分钟预告
等价代数表达式2
在这篇等价代数表达式i的后续文章中,继续你在海底烹饪世界的迅速崛起,通过向前和反向使用分配律来制作等价表达式,根据等价对表达式进行排序,并亲自协助暴躁厨师自己进行一个将给他(也许还有你)带来名利的项目。 5分钟预告
指数和幂规则
选择正确的步骤,使用指数和幂的规则来简化带有指数的表达式。使用反馈来诊断不正确的步骤。 5分钟预告
保理特殊产品
选择正确的步骤来分解包含完全平方二项式、平方之差或常数因子的多项式。使用反馈来诊断不正确的步骤。 5分钟预告
的分解建模斧头 2 +bx +c
用面积模型分解先导系数大于1的多项式。使用逐步反馈来诊断任何错误。 5分钟预告
的分解建模x 2 +bx +c
用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。 5分钟预告
指数乘法表达式
选择正确的步骤来乘指数表达式。使用反馈来诊断不正确的步骤。 5分钟预告
代数表达式的化简
来见见蜘蛛侠,一个对代数表达式有兴趣的古怪生物!作为蜘蛛侠的养主,你有责任喂养它,让它长成蜘蛛侠的模样。但要小心,蜘蛛龙是一个挑食的人,他喜欢他的食物尽可能简单。利用交换律、分配律和加法和乘法的其他性质,把表达式写成最简单(也是最美味)的形式。 5分钟预告
简化代数表达式2
你会收养Spidro, Centeon,还是Ping Bee?它们是三种完全不同的生物,但有一个共同点:渴望简化代数表达式!了解如何使用分配律来组合可变术语,生成有助于您的宠物健康强壮成长的表达式。您将成为识别可以组合的术语的专家-甚至是带有指数和多个变量的术语。经过足够的练习,你和你的宠物将准备好竞争表情吃电路。好运! 5分钟预告
三角函数的化简
选择正确的步骤来简化一个三角函数。使用逐步反馈来诊断不正确的步骤。 5分钟预告
解代数方程2
解方程难吗?如果你知道如何分离一个变量,你就成功了一半。另一半呢?不要做任何破坏等式平衡的事情。加入我们勇敢的变量朋友,当他遇到代数方程和一个(有时暴躁的)等号。稍加练习,你会发现解方程一点也不棘手。 5分钟预告
使用代数表达式
将代数表达式翻译成英语短语,并将英语短语翻译成代数表达式。阅读表达式或短语并选择单词瓦格或符号瓦格以形成相应的短语或短语。 5分钟预告
A-APR::多项式和有理表达式的算术
2.2.1::了解多项式零与因子之间的关系
A-APR。2: : Know and apply the Remainder Theorem: For a polynomial p(x) and a number a, the remainder on division by x – a is p(a), so p(a) = 0 if and only if (x – a) is a factor of p(x).
多项式的综合除法
对多项式进行除法,方法是将正确的数拖到正确的位置进行综合除法。比较解释多项式除法与合成除法。 5分钟预告
多项式和线性因子
创建一个多项式作为线性因子的乘积。改变线性因子中的值,看看它们与函数根的关系。 5分钟预告
A-APR。3:当适当的因式分解可用时,识别多项式的零点,并使用零点构造由多项式定义的函数的粗略图(限制为一阶多项式和二阶多项式)。
多项式函数图
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。 5分钟预告
的分解建模x 2 +bx +c
用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。 5分钟预告
多项式和线性因子
创建一个多项式作为线性因子的乘积。改变线性因子中的值,看看它们与函数根的关系。 5分钟预告
因式二次方程
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。 5分钟预告
顶点形式的二次方程
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。 5分钟预告
2.2.2::用多项式恒等式来解决问题
A-APR。4:证明多项式恒等式,并用它们来描述数值关系。
保理特殊产品
选择正确的步骤来分解包含完全平方二项式、平方之差或常数因子的多项式。使用反馈来诊断不正确的步骤。 5分钟预告
A-CED:创建方程式
2.3.1::创建描述数字或关系的方程
得了。1:在一个变量中创建方程和不等式,并用它们来解决问题。
绝对值方程与不等式
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。 5分钟预告
算术序列
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。 5分钟预告
复利
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。 5分钟预告
探讨单变量线性不等式
解决一个变量的不等式。检查数轴上的不等式,并确定哪些点是不等式的解。 5分钟预告
几何序列
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。 5分钟预告
二元线性不等式
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。 5分钟预告
一步方程建模
用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。 5分钟预告
建模与求解两步方程
用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。 5分钟预告
二次不等式
利用二次不等式的图求其解集。改变不等号和不等号符号的术语。检查边界曲线和阴影区域如何响应变化。 5分钟预告
在数轴上解方程
用数轴上的动态箭头解一个包含小数的方程。 5分钟预告
求解单变量线性不等式
解决一个变量的一步不等式。把解画在数轴上。 5分钟预告
求解两步方程
选择正确的步骤来解一个两步方程。使用反馈来诊断不正确的步骤。 5分钟预告
使用代数方程
把方程式翻译成英文句子,再把英文句子翻译成方程式。阅读方程式或句子,选择单词或符号方块组成相应的句子或方程式。 5分钟预告
得了。2: : Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
绝对值方程与不等式
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。 5分钟预告
圈
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。 5分钟预告
复利
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。 5分钟预告
线性函数
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。 5分钟预告
直线的点斜式
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。 5分钟预告
点,线和方程
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。 5分钟预告
多项式形式的二次方程
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。 5分钟预告
顶点形式的二次方程
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。 5分钟预告
直线的斜截式
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。 5分钟预告
在数轴上解方程
用数轴上的动态箭头解一个包含小数的方程。 5分钟预告
直线的标准形式
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。 5分钟预告
使用代数方程
把方程式翻译成英文句子,再把英文句子翻译成方程式。阅读方程式或句子,选择单词或符号方块组成相应的句子或方程式。 5分钟预告
A-REI:用方程和不等式推理
2.4.1:将解方程理解为推理的过程,并解释推理过程
A-REI。1:从原方程有解的假设出发,从上一步中断言的数字相等出发,如下解释求解一个简单方程的每一步。构造一个可行的论证来证明一个解决方法。
一步方程建模
用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。 5分钟预告
建模与求解两步方程
用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。 5分钟预告
解代数方程2
解方程难吗?如果你知道如何分离一个变量,你就成功了一半。另一半呢?不要做任何破坏等式平衡的事情。加入我们勇敢的变量朋友,当他遇到代数方程和一个(有时暴躁的)等号。稍加练习,你会发现解方程一点也不棘手。 5分钟预告
在数轴上解方程
用数轴上的动态箭头解一个包含小数的方程。 5分钟预告
求解任意变量的公式
选择正确的步骤来求解给定变量的公式。使用反馈来诊断不正确的步骤。 5分钟预告
求解两步方程
选择正确的步骤来解一个两步方程。使用反馈来诊断不正确的步骤。 5分钟预告
A-REI。2: : Solve simple rational and radical equations in one variable, and give examples showing how extraneous solutions may arise.
激进的功能
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。 5分钟预告
2.4.2::图形化地表示和解决方程和不等式
A-REI。11:解释为什么方程y = f(x)和y = g(x)的图形相交点的x坐标是方程f(x) = g(x)的解;找出近似解,例如,利用技术绘制函数图,制作值表,或找到连续的近似值。包括f(x)和/或g(x)是线性、多项式、有理、绝对值、指数和对数函数的情况。
猫和老鼠(线性系统建模)
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。 5分钟预告
直线的点斜式
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。 5分钟预告
通过绘制每边来解方程
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。 5分钟预告
求解线性系统(矩阵和特殊解)
探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x ,y )指向一个方程或方程组的解。 5分钟预告
求解线性系统(斜截式)
用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
(x ,y ) 点是一个方程的解,或两个方程组的解。 5分钟预告
直线的标准形式
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。 5分钟预告
F::函数
F-IF::口译功能
3.1.1::根据上下文解释应用程序中出现的功能
f。4:对于一个为两个量之间的关系建模的函数,用量来解释图和表的关键特征,并给出关系的口头描述来绘制显示关键特征的图形。
线性函数的绝对值
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。 5分钟预告
指数函数
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。 5分钟预告
函数机器3(函数和问题解决)
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。 5分钟预告
有理函数的一般形式
将有理函数的方程与其图进行比较。分子和分母乘以或除以线性因子,并探索图形如何响应变化。 5分钟预告
多项式函数图
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。 5分钟预告
对数函数
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y =x 比较相关的指数函数。 5分钟预告
点,线和方程
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。 5分钟预告
因式二次方程
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。 5分钟预告
多项式形式的二次方程
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。 5分钟预告
顶点形式的二次方程
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。 5分钟预告
激进的功能
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。 5分钟预告
f。6:计算和解释一个函数(以符号形式或表格形式表示)在指定时间间隔内的平均变化率。从图表中估计变化率。
猫和老鼠(线性系统建模)
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。 5分钟预告
坡
探索一条直线的斜率,并学习如何计算斜率。通过移动直线上的点来调整直线,并观察其斜率的变化。 5分钟预告
3.1.2:分析使用不同表示法的函数
f。7:图形函数用符号表示,并显示图形的关键特征,在简单的情况下手工表达,在更复杂的情况下使用技术。
f。7c::绘制多项式函数,在适当的因式分解可用时识别零点,并显示端点行为。
多项式函数图
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。 5分钟预告
多项式和线性因子
创建一个多项式作为线性因子的乘积。改变线性因子中的值,看看它们与函数根的关系。 5分钟预告
因式二次方程
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。 5分钟预告
二次的根
利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。 5分钟预告
杀死它!游戏
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。 5分钟预告
f。7e:指数和对数函数图,显示截距和结束行为,三角函数图,显示周期、中线和振幅。
余弦函数
将余弦函数图与单位圆上的夹角图作比较。沿着余弦曲线拖动一点,在单位圆上看到对应的角度。 5分钟预告
指数函数
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。 5分钟预告
指数函数概论
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。 5分钟预告
对数函数
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y =x 比较相关的指数函数。 5分钟预告
对数函数:转换和缩放
改变对数函数方程中的值,并检查图形是如何转换或缩放的。将这些变换与函数的定义域,以及图中的渐近线联系起来。 5分钟预告
正弦函数
将正弦函数图与单位圆上的夹角图作比较。沿着正弦曲线拖动一点,在单位圆上看到对应的角度。 5分钟预告
正切函数
将正切函数图与单位圆上的夹角图进行比较。沿着切线拖动一点,在单位圆上看到对应的角度。 5分钟预告
转换和缩放正弦和余弦函数
用正弦或余弦函数的图形做实验。探索如何改变方程中的值可以平移或缩放函数的图形。 5分钟预告
f。9:比较两个以不同方式表示的函数的性质(代数、图形、数字表或口头描述)。
有理函数的一般形式
将有理函数的方程与其图进行比较。分子和分母乘以或除以线性因子,并探索图形如何响应变化。 5分钟预告
多项式函数图
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。 5分钟预告
线性函数
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。 5分钟预告
对数函数
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y =x 比较相关的指数函数。 5分钟预告
多项式形式的二次方程
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。 5分钟预告
顶点形式的二次方程
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。 5分钟预告
F-BF:建筑功能
3.2.1::从现有函数构建新函数
F-BF。3::识别用f(x) + k, k, f(x), f(kx),和f(x + k)替换f(x)对特定值k(正负)的影响;求给定图的k的值。用案例进行实验,并使用技术说明对图的影响的解释。
线性函数的绝对值
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。 5分钟预告
指数函数
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。 5分钟预告
指数函数概论
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。 5分钟预告
对数函数
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y =x 比较相关的指数函数。 5分钟预告
对数函数:转换和缩放
改变对数函数方程中的值,并检查图形是如何转换或缩放的。将这些变换与函数的定义域,以及图中的渐近线联系起来。 5分钟预告
顶点形式的二次方程
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。 5分钟预告
激进的功能
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。 5分钟预告
理性的功能
将有理函数的图与其方程作比较。改变方程的项,并探索图形是如何被平移和拉伸的。在数轴上检查定义域,并将其与方程的图形进行比较。 5分钟预告
转换和缩放函数
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。 5分钟预告
转换和缩放正弦和余弦函数
用正弦或余弦函数的图形做实验。探索如何改变方程中的值可以平移或缩放函数的图形。 5分钟预告
翻译
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。 5分钟预告
杀死它!游戏
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。 5分钟预告
F-LE:线性,二次和指数模型
3.3.1:构造并比较线性、二次、指数模型并解决问题
F-LE。4:对于指数模型,表示为对数解ab的ct次方= d,其中a, c和d是数字,b是2,10,或e;利用技术计算对数。
复利
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。 5分钟预告
对数函数
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y =x 比较相关的指数函数。 5分钟预告
F-TF:三角函数
3.4.1:利用单位圆扩展三角函数的定义域
F-TF。1:理解一个角度的弧度测量为单位圆上的圆弧的长度。
正弦函数
将正弦函数图与单位圆上的夹角图作比较。沿着正弦曲线拖动一点,在单位圆上看到对应的角度。 5分钟预告
正切函数
将正切函数图与单位圆上的夹角图进行比较。沿着切线拖动一点,在单位圆上看到对应的角度。 5分钟预告
F-TF。2: : Explain how the unit circle in the coordinate plane enables the extension of trigonometric functions to all real numbers, interpreted as radian measures of angles traversed counterclockwise around the unit circle.
余弦函数
将余弦函数图与单位圆上的夹角图作比较。沿着余弦曲线拖动一点,在单位圆上看到对应的角度。 5分钟预告
正弦函数
将正弦函数图与单位圆上的夹角图作比较。沿着正弦曲线拖动一点,在单位圆上看到对应的角度。 5分钟预告
正切函数
将正切函数图与单位圆上的夹角图进行比较。沿着切线拖动一点,在单位圆上看到对应的角度。 5分钟预告
3.4.2::用三角函数模拟周期现象
F-TF。5:选择三角函数来模拟具有指定振幅、频率和中线的周期现象。
转换和缩放函数
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。 5分钟预告
转换和缩放正弦和余弦函数
用正弦或余弦函数的图形做实验。探索如何改变方程中的值可以平移或缩放函数的图形。 5分钟预告
3.4.3:证明并应用三角恒等式
F-TF。8:证明毕达哥拉斯恒等式sin²(theta) + cos²(theta) = 1,并使用它来找到sin(theta), cos(theta),或tan(theta)给定sin(theta), cos(theta),或tan(theta)和角度的象限。
三角函数的化简
选择正确的步骤来简化一个三角函数。使用逐步反馈来诊断不正确的步骤。 5分钟预告
正弦,余弦和正切比
重塑和调整一个直角三角形,并检查角a的正弦,角a的余弦和角a的正切是如何变化的。 5分钟预告
G:几何
G-CO:一致性
4.1.1::构造几何结构
公司。12:用各种工具和方法(指南针和直尺、绳子、反射装置、折纸、动态几何软件等)制作正式的几何结构。
构造等分段与角
用直尺和圆规构造相等的段和角。使用循序渐进的解释和反馈来加深对结构的理解。 5分钟预告
构建平行线和垂直线
用直尺和圆规画出平行线和垂线。使用循序渐进的解释和反馈来加深对结构的理解。 5分钟预告
线段和角平分线
探索位于线段垂直平分线上的点和位于角平分线上的点的特殊性质。操作点、线段和角度,看看这些属性是否始终为真。 5分钟预告
公司。13:构造一个等边三角形、一个正方形和一个正六边形,并把它嵌在一个圆里。
并行线,中位数和高度
使用可以调整大小和重塑的三角形,探索垂直平分线、内界线圆、角平分线、内切圆、高度和中位数之间的关系。 5分钟预告
上角
调整圆弧内夹角的大小。研究圆周角与其截弧之间的关系。 5分钟预告
G-C:圆圈
4.2.1::理解并应用有关圆的定理
g c。2: : Identify and describe relationships among inscribed angles, radii, and chords.
和弦和弧线
探索圆心角与其截弧之间的关系。同时探索和弦和它们到圆心的距离之间的关系。 5分钟预告
圆的周长和面积
上角
调整圆弧内夹角的大小。研究圆周角与其截弧之间的关系。 5分钟预告
g c。第3题:构造三角形的内切圆和外切圆,证明圆内切圆中的四边形的角的性质。
并行线,中位数和高度
使用可以调整大小和重塑的三角形,探索垂直平分线、内界线圆、角平分线、内切圆、高度和中位数之间的关系。 5分钟预告
上角
调整圆弧内夹角的大小。研究圆周角与其截弧之间的关系。 5分钟预告
4.2.2:求圆的弧长和扇形面积
g c。5:利用相似度推导出一个角度截弧的长度与半径成正比的事实,并将角度的弧度测量定义为比例常数;推导出扇形面积的公式。
和弦和弧线
探索圆心角与其截弧之间的关系。同时探索和弦和它们到圆心的距离之间的关系。 5分钟预告
G-GPE::用方程表示几何性质
4.3.1::在圆锥截面的几何描述和方程之间进行转换
G-GPE。1:利用毕达哥拉斯定理推导出给定圆心和半径的圆的方程;完成这个正方形,求出由方程给出的圆的圆心和半径。
圈
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。 5分钟预告
距离公式
探索距离公式作为毕达哥拉斯定理的应用。学会把任意两点看作直角三角形斜边的端点。拖动这些点并检查三角形和距离计算的变化。 5分钟预告
勾股定理
用动态直角三角形探索勾股定理。利用三角形边长正方形的面积,研究毕达哥拉斯定理的一个直观的几何应用。 5分钟预告
毕达哥拉斯定理与地动板
在交互式地理定位板中构建直角三角形,并在三角形的两侧构建正方形,以发现勾股定理。 5分钟预告
G-GPE。2: : Derive the equation of a parabola given a focus and directrix.
抛物线
探索抛物线在一个圆锥截面上下文中。找出抛物线的顶点、焦点和准线之间的关系,以及它们与方程之间的关系。 5分钟预告
4.3.2:用坐标代数证明简单几何定理
G-GPE。7:使用坐标来计算多边形的周长和三角形和矩形的面积,例如,使用距离公式。
距离公式
探索距离公式作为毕达哥拉斯定理的应用。学会把任意两点看作直角三角形斜边的端点。拖动这些点并检查三角形和距离计算的变化。 5分钟预告
学生:统计与概率
S-ID::解释分类和定量数据
5.1.1:总结、表示和解释单个计数或测量变量的数据
S-ID。4:使用数据集的平均值和标准偏差使其符合正态分布,并估计总体百分比。认识到有些数据集不适合使用这种方法。使用计算器、电子表格和表格来估计正常曲线下的面积。
轮询:城市
对一个大城市的居民进行民意调查,以确定他们对“是”或“否”问题的反应。估计全城投赞成票的实际比例。检查许多民意调查的结果,以帮助评估单个民意调查结果的可靠性。看看对于足够大的民意调查,正态曲线是如何逼近二项分布的。 5分钟预告
总体和样本
比较从总体分布中抽取的样本分布。基于样本分布预测总体分布的特征,并检查一个小样本如何代表给定的总体。 5分钟预告
实时的直方图
试着每2秒点击一次鼠标。记录每次点击之间的时间间隔,以及误差和百分比误差。数据可以以表格、直方图或散点图的形式显示。当收集大量数据时,观察和测量结果分布的特征。 5分钟预告
5.1.2:总结、表示和解释两个分类和定量变量的数据
S-ID。6:在散点图上表示两个定量变量的数据,并描述变量之间的关系。
S-ID。6a::拟合一个函数到数据;使用适合于数据的函数来解决数据上下文中的问题。
相关
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。 5分钟预告
最小二乘最佳拟合直线
用你自己的判断为散点图中的数据拟合一条线。然后比较最佳拟合的最小二乘线。 5分钟预告
利用趋势线求解
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。 5分钟预告
散点图趋势
检查具有负相关或正相关的随机数据集的散点图。改变相关性并探索相关性如何反映在散点图和趋势线中。 5分钟预告
杀死它!游戏
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。 5分钟预告
S-ID。6b:通过绘制和分析残差非正式地评估函数的拟合。
相关
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。 5分钟预告
最小二乘最佳拟合直线
用你自己的判断为散点图中的数据拟合一条线。然后比较最佳拟合的最小二乘线。 5分钟预告
利用趋势线求解
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。 5分钟预告
散点图趋势
检查具有负相关或正相关的随机数据集的散点图。改变相关性并探索相关性如何反映在散点图和趋势线中。 5分钟预告
S-IC:推论和证明结论
5.2.1:理解和评估统计实验基础上的随机过程
S-IC。1:将统计学理解为基于总体中的随机样本对总体参数做出推断的过程。
轮询:城市
对一个大城市的居民进行民意调查,以确定他们对“是”或“否”问题的反应。估计全城投赞成票的实际比例。检查许多民意调查的结果,以帮助评估单个民意调查结果的可靠性。看看对于足够大的民意调查,正态曲线是如何逼近二项分布的。 5分钟预告
轮询:社区
在一个小社区对市民进行电话调查,以确定他们对“是”或“否”问题的反应。用结果来估计整个人群的情绪。调查这个估计的误差是如何随着被调查的人越来越多而变小的。比较随机抽样和非随机抽样。 5分钟预告
总体和样本
比较从总体分布中抽取的样本分布。基于样本分布预测总体分布的特征,并检查一个小样本如何代表给定的总体。 5分钟预告
S-IC。2: : Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation.
轮询:城市
对一个大城市的居民进行民意调查,以确定他们对“是”或“否”问题的反应。估计全城投赞成票的实际比例。检查许多民意调查的结果,以帮助评估单个民意调查结果的可靠性。看看对于足够大的民意调查,正态曲线是如何逼近二项分布的。 5分钟预告
轮询:社区
在一个小社区对市民进行电话调查,以确定他们对“是”或“否”问题的反应。用结果来估计整个人群的情绪。调查这个估计的误差是如何随着被调查的人越来越多而变小的。比较随机抽样和非随机抽样。 5分钟预告
总体和样本
比较从总体分布中抽取的样本分布。基于样本分布预测总体分布的特征,并检查一个小样本如何代表给定的总体。 5分钟预告
5.2.2:从抽样调查、实验和观察性研究中推论和证明结论
S-IC。3:认识样本调查、实验和观察性研究的目的和差异;请解释随机化与每一种方法的关系。
轮询:城市
对一个大城市的居民进行民意调查,以确定他们对“是”或“否”问题的反应。估计全城投赞成票的实际比例。检查许多民意调查的结果,以帮助评估单个民意调查结果的可靠性。看看对于足够大的民意调查,正态曲线是如何逼近二项分布的。 5分钟预告
轮询:社区
在一个小社区对市民进行电话调查,以确定他们对“是”或“否”问题的反应。用结果来估计整个人群的情绪。调查这个估计的误差是如何随着被调查的人越来越多而变小的。比较随机抽样和非随机抽样。 5分钟预告
S-IC。4:使用抽样调查的数据来估计总体平均值或比例;通过使用随机抽样的模拟模型来确定误差范围。
轮询:城市
对一个大城市的居民进行民意调查,以确定他们对“是”或“否”问题的反应。估计全城投赞成票的实际比例。检查许多民意调查的结果,以帮助评估单个民意调查结果的可靠性。看看对于足够大的民意调查,正态曲线是如何逼近二项分布的。 5分钟预告
轮询:社区
在一个小社区对市民进行电话调查,以确定他们对“是”或“否”问题的反应。用结果来估计整个人群的情绪。调查这个估计的误差是如何随着被调查的人越来越多而变小的。比较随机抽样和非随机抽样。 5分钟预告
S-IC。5:使用随机实验的数据来比较两种治疗方法;使用模拟来确定参数之间的差异是否显著。
轮询:城市
对一个大城市的居民进行民意调查,以确定他们对“是”或“否”问题的反应。估计全城投赞成票的实际比例。检查许多民意调查的结果,以帮助评估单个民意调查结果的可靠性。看看对于足够大的民意调查,正态曲线是如何逼近二项分布的。 5分钟预告
轮询:社区
在一个小社区对市民进行电话调查,以确定他们对“是”或“否”问题的反应。用结果来估计整个人群的情绪。调查这个估计的误差是如何随着被调查的人越来越多而变小的。比较随机抽样和非随机抽样。 5分钟预告
S-IC。6:根据数据评估报告。
使用统计数据描述数据
通过图来研究数据集的平均值、中位数、模态和范围。操作数据并观察平均值、中位数、模式和范围如何变化(或者在某些情况下,如何保持不变)。 5分钟预告
轮询:城市
对一个大城市的居民进行民意调查,以确定他们对“是”或“否”问题的反应。估计全城投赞成票的实际比例。检查许多民意调查的结果,以帮助评估单个民意调查结果的可靠性。看看对于足够大的民意调查,正态曲线是如何逼近二项分布的。 5分钟预告
轮询:社区
在一个小社区对市民进行电话调查,以确定他们对“是”或“否”问题的反应。用结果来估计整个人群的情绪。调查这个估计的误差是如何随着被调查的人越来越多而变小的。比较随机抽样和非随机抽样。 5分钟预告
实时的直方图
试着每2秒点击一次鼠标。记录每次点击之间的时间间隔,以及误差和百分比误差。数据可以以表格、直方图或散点图的形式显示。当收集大量数据时,观察和测量结果分布的特征。 5分钟预告