第1课:科学与工程实践
8. s。1:学生将使用科学和工程实践,包括科学探究的过程和技能,来发展对科学内容的理解。
8. s。科学和工程实践支持科学概念的发展,培养科学思维所必需的思维习惯,并允许学生以类似于科学家和工程师使用的方式从事科学研究
8. s.1a。1:问问题
8.S.1A.1.1::为科学调查提出假设,
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
听力:频率和音量
通过听低、中、高频的声音来测试你的听力范围。比较每个频率下声音的相对响度,以创建等响度曲线。在一个安静的房间里,测量每个频率的可听阈值,并将结果与他人进行比较。每个声音的音量都可以调节。5分钟预告
8.S.1A.1.2:细化模型、解释或设计,或
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
可编程的探测器
在这篇关于编码的介绍中,编写一个探测车来探索火星表面。首先使用瓦片创建简单的程序,包括向前或向后移动、转弯、跳跃、循环和拾取岩石样本。然后使用文本指令来优化代码。使用你的技能来编程漫游车完成火星上的六个具有挑战性的任务。5分钟预告
8. s. 1. 1.3:扩大调查结果或质疑索赔。
听力:频率和音量
通过听低、中、高频的声音来测试你的听力范围。比较每个频率下声音的相对响度,以创建等响度曲线。在一个安静的房间里,测量每个频率的可听阈值,并将结果与他人进行比较。每个声音的音量都可以调节。5分钟预告
8. s.1a。2:开发、使用和改进模型
8.S.1A.2.1:理解或表示现象、过程和关系
珊瑚礁1 -非生物因素
探索影响加勒比海珊瑚礁的非生物因素。在这个简化的珊瑚礁模型中,许多因素都可以被操纵,包括海洋温度和pH值、风暴严重程度,以及来自伐木、污水和农业的过量沉积物和营养物质的输入。点击“提前一年”查看珊瑚礁对这些变化的反应。5分钟预告
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
冲蚀率
在模拟3D环境中探索侵蚀。观察景观如何随着时间的推移而演变,因为它是由流动的水的力量塑造的。改变初始景观、岩石类型、降水量、平均温度和植被,并测量每个变量如何影响侵蚀率和产生的景观特征。5分钟预告
小鼠遗传(一个特征)
培育具有特定皮毛颜色的已知基因型的“纯”小鼠,并了解性状是如何通过显性和隐性基因传递的。老鼠可以在笼子里储存,以便将来繁殖,每一对老鼠繁殖一次,就会报告皮毛颜色的统计数据。庞尼特平方可以用来预测结果。5分钟预告
可编程的探测器
在这篇关于编码的介绍中,编写一个探测车来探索火星表面。首先使用瓦片创建简单的程序,包括向前或向后移动、转弯、跳跃、循环和拾取岩石样本。然后使用文本指令来优化代码。使用你的技能来编程漫游车完成火星上的六个具有挑战性的任务。5分钟预告
8.S.1A.2.2:测试设备或解决方案,或
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
可编程的探测器
在这篇关于编码的介绍中,编写一个探测车来探索火星表面。首先使用瓦片创建简单的程序,包括向前或向后移动、转弯、跳跃、循环和拾取岩石样本。然后使用文本指令来优化代码。使用你的技能来编程漫游车完成火星上的六个具有挑战性的任务。5分钟预告
8.S.1A.2.3::与他人交流想法。
冲蚀率
在模拟3D环境中探索侵蚀。观察景观如何随着时间的推移而演变,因为它是由流动的水的力量塑造的。改变初始景观、岩石类型、降水量、平均温度和植被,并测量每个变量如何影响侵蚀率和产生的景观特征。5分钟预告
8. s.1a。3:计划并进行受控的科学调查,以回答问题,测试假设,并提出解释:
8.S.1A.3.1::提出科学问题和可验证的假设,
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
听力:频率和音量
通过听低、中、高频的声音来测试你的听力范围。比较每个频率下声音的相对响度,以创建等响度曲线。在一个安静的房间里,测量每个频率的可听阈值,并将结果与他人进行比较。每个声音的音量都可以调节。5分钟预告
视觉反应与声音反应
当视觉或听觉刺激出现时,通过尽可能快地点击鼠标来测量你的反应时间。记录单个响应时间,以及每个测试的平均值和标准偏差。数据的直方图显示了视觉和声音响应时间的总体趋势。测试的类型以及使用的符号和声音由用户选择。5分钟预告
8.S.1A.3.2::确定材料、程序和变量;
扩散
当粒子通过一个可调节的间隙或隔板从房间的一侧反弹到另一侧时,探索它们的运动。粒子的质量可以调节,也可以调节房间的温度和粒子的初始数量。在现实环境中,这可以用来了解气味如何传播,流体如何通过缝隙,气体热力学和统计概率。5分钟预告
听力:频率和音量
通过听低、中、高频的声音来测试你的听力范围。比较每个频率下声音的相对响度,以创建等响度曲线。在一个安静的房间里,测量每个频率的可听阈值,并将结果与他人进行比较。每个声音的音量都可以调节。5分钟预告
视觉反应与声音反应
当视觉或听觉刺激出现时,通过尽可能快地点击鼠标来测量你的反应时间。记录单个响应时间,以及每个测试的平均值和标准偏差。数据的直方图显示了视觉和声音响应时间的总体趋势。测试的类型以及使用的符号和声音由用户选择。5分钟预告
8.S.1A.3.3:选择和使用适当的工具或工具来收集定性和定量数据
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
可编程的探测器
在这篇关于编码的介绍中,编写一个探测车来探索火星表面。首先使用瓦片创建简单的程序,包括向前或向后移动、转弯、跳跃、循环和拾取岩石样本。然后使用文本指令来优化代码。使用你的技能来编程漫游车完成火星上的六个具有挑战性的任务。5分钟预告
8.S.1A.3.4::以适当的形式记录和表示数据。使用适当的安全程序。
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
扩散
当粒子通过一个可调节的间隙或隔板从房间的一侧反弹到另一侧时,探索它们的运动。粒子的质量可以调节,也可以调节房间的温度和粒子的初始数量。在现实环境中,这可以用来了解气味如何传播,流体如何通过缝隙,气体热力学和统计概率。5分钟预告
冲蚀率
在模拟3D环境中探索侵蚀。观察景观如何随着时间的推移而演变,因为它是由流动的水的力量塑造的。改变初始景观、岩石类型、降水量、平均温度和植被,并测量每个变量如何影响侵蚀率和产生的景观特征。5分钟预告
听力:频率和音量
通过听低、中、高频的声音来测试你的听力范围。比较每个频率下声音的相对响度,以创建等响度曲线。在一个安静的房间里,测量每个频率的可听阈值,并将结果与他人进行比较。每个声音的音量都可以调节。5分钟预告
可编程的探测器
在这篇关于编码的介绍中,编写一个探测车来探索火星表面。首先使用瓦片创建简单的程序,包括向前或向后移动、转弯、跳跃、循环和拾取岩石样本。然后使用文本指令来优化代码。使用你的技能来编程漫游车完成火星上的六个具有挑战性的任务。5分钟预告
8. s.1a。4:分析和解释信息文本,观察,测量,或调查使用一系列的方法(如制表,图表,或统计分析)的数据
8.S.1A.4.1:揭示模式并构造意义或
波义耳定律和查尔斯定律
通过进行温度恒定(波义耳定律)和压力保持固定(查尔斯定律)的实验来研究理想气体的性质。压力是通过在容器盖上放置质量来控制的,温度是通过可调的热源来控制的。吕萨克关于压力与温度的定律也可以通过保持体积恒定来探索。5分钟预告
珊瑚礁1 -非生物因素
探索影响加勒比海珊瑚礁的非生物因素。在这个简化的珊瑚礁模型中,许多因素都可以被操纵,包括海洋温度和pH值、风暴严重程度,以及来自伐木、污水和农业的过量沉积物和营养物质的输入。点击“提前一年”查看珊瑚礁对这些变化的反应。5分钟预告
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
扩散
当粒子通过一个可调节的间隙或隔板从房间的一侧反弹到另一侧时,探索它们的运动。粒子的质量可以调节,也可以调节房间的温度和粒子的初始数量。在现实环境中,这可以用来了解气味如何传播,流体如何通过缝隙,气体热力学和统计概率。5分钟预告
冲蚀率
在模拟3D环境中探索侵蚀。观察景观如何随着时间的推移而演变,因为它是由流动的水的力量塑造的。改变初始景观、岩石类型、降水量、平均温度和植被,并测量每个变量如何影响侵蚀率和产生的景观特征。5分钟预告
听力:频率和音量
通过听低、中、高频的声音来测试你的听力范围。比较每个频率下声音的相对响度,以创建等响度曲线。在一个安静的房间里,测量每个频率的可听阈值,并将结果与他人进行比较。每个声音的音量都可以调节。5分钟预告
可编程的探测器
在这篇关于编码的介绍中,编写一个探测车来探索火星表面。首先使用瓦片创建简单的程序,包括向前或向后移动、转弯、跳跃、循环和拾取岩石样本。然后使用文本指令来优化代码。使用你的技能来编程漫游车完成火星上的六个具有挑战性的任务。5分钟预告
8.S.1A.4.2:支持假设、解释、主张或设计。
波义耳定律和查尔斯定律
通过进行温度恒定(波义耳定律)和压力保持固定(查尔斯定律)的实验来研究理想气体的性质。压力是通过在容器盖上放置质量来控制的,温度是通过可调的热源来控制的。吕萨克关于压力与温度的定律也可以通过保持体积恒定来探索。5分钟预告
珊瑚礁1 -非生物因素
探索影响加勒比海珊瑚礁的非生物因素。在这个简化的珊瑚礁模型中,许多因素都可以被操纵,包括海洋温度和pH值、风暴严重程度,以及来自伐木、污水和农业的过量沉积物和营养物质的输入。点击“提前一年”查看珊瑚礁对这些变化的反应。5分钟预告
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
扩散
当粒子通过一个可调节的间隙或隔板从房间的一侧反弹到另一侧时,探索它们的运动。粒子的质量可以调节,也可以调节房间的温度和粒子的初始数量。在现实环境中,这可以用来了解气味如何传播,流体如何通过缝隙,气体热力学和统计概率。5分钟预告
距离-时间图-度量
创建一个跑步者的位置与时间的图表,并根据你所做的图表观察跑步者完成40米冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
冲蚀率
在模拟3D环境中探索侵蚀。观察景观如何随着时间的推移而演变,因为它是由流动的水的力量塑造的。改变初始景观、岩石类型、降水量、平均温度和植被,并测量每个变量如何影响侵蚀率和产生的景观特征。5分钟预告
听力:频率和音量
通过听低、中、高频的声音来测试你的听力范围。比较每个频率下声音的相对响度,以创建等响度曲线。在一个安静的房间里,测量每个频率的可听阈值,并将结果与他人进行比较。每个声音的音量都可以调节。5分钟预告
可编程的探测器
在这篇关于编码的介绍中,编写一个探测车来探索火星表面。首先使用瓦片创建简单的程序,包括向前或向后移动、转弯、跳跃、循环和拾取岩石样本。然后使用文本指令来优化代码。使用你的技能来编程漫游车完成火星上的六个具有挑战性的任务。5分钟预告
8. s.1a。5:运用数学和计算思维
8.S.1A.5.1::使用和操作适当的公制单位,
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
冲蚀率
在模拟3D环境中探索侵蚀。观察景观如何随着时间的推移而演变,因为它是由流动的水的力量塑造的。改变初始景观、岩石类型、降水量、平均温度和植被,并测量每个变量如何影响侵蚀率和产生的景观特征。5分钟预告
8. s .1 .5.2::收集和分析数据,
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
听力:频率和音量
通过听低、中、高频的声音来测试你的听力范围。比较每个频率下声音的相对响度,以创建等响度曲线。在一个安静的房间里,测量每个频率的可听阈值,并将结果与他人进行比较。每个声音的音量都可以调节。5分钟预告
视觉反应与声音反应
当视觉或听觉刺激出现时,通过尽可能快地点击鼠标来测量你的反应时间。记录单个响应时间,以及每个测试的平均值和标准偏差。数据的直方图显示了视觉和声音响应时间的总体趋势。测试的类型以及使用的符号和声音由用户选择。5分钟预告
8.S.1A.5.3:表达模型和调查的变量之间的关系,或
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
听力:频率和音量
通过听低、中、高频的声音来测试你的听力范围。比较每个频率下声音的相对响度,以创建等响度曲线。在一个安静的房间里,测量每个频率的可听阈值,并将结果与他人进行比较。每个声音的音量都可以调节。5分钟预告
8. s .1 .5.4:使用年级级别的适当统计数据分析数据。
视觉反应与声音反应
当视觉或听觉刺激出现时,通过尽可能快地点击鼠标来测量你的反应时间。记录单个响应时间,以及每个测试的平均值和标准偏差。数据的直方图显示了视觉和声音响应时间的总体趋势。测试的类型以及使用的符号和声音由用户选择。5分钟预告
8. s.1a。6:构造现象的解释使用
8. s .1 .6.1:主要或次要科学证据和模型
大爆炸理论-哈勃定律
跟随埃德温·哈勃的脚步,去发现支持大爆炸理论的证据。首先,观察不同星系中的造父变星,确定它们的距离。然后,测量这些星系的红移,以确定它们的后退速度。创建一个速度与距离的散点图,并将其与不断膨胀的宇宙联系起来。5分钟预告
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
冲蚀率
在模拟3D环境中探索侵蚀。观察景观如何随着时间的推移而演变,因为它是由流动的水的力量塑造的。改变初始景观、岩石类型、降水量、平均温度和植被,并测量每个变量如何影响侵蚀率和产生的景观特征。5分钟预告
小鼠遗传(一个特征)
培育具有特定皮毛颜色的已知基因型的“纯”小鼠,并了解性状是如何通过显性和隐性基因传递的。老鼠可以在笼子里储存,以便将来繁殖,每一对老鼠繁殖一次,就会报告皮毛颜色的统计数据。庞尼特平方可以用来预测结果。5分钟预告
可编程的探测器
在这篇关于编码的介绍中,编写一个探测车来探索火星表面。首先使用瓦片创建简单的程序,包括向前或向后移动、转弯、跳跃、循环和拾取岩石样本。然后使用文本指令来优化代码。使用你的技能来编程漫游车完成火星上的六个具有挑战性的任务。5分钟预告
8. s .1 .6.2:科学调查结论,
听力:频率和音量
通过听低、中、高频的声音来测试你的听力范围。比较每个频率下声音的相对响度,以创建等响度曲线。在一个安静的房间里,测量每个频率的可听阈值,并将结果与他人进行比较。每个声音的音量都可以调节。5分钟预告
小鼠遗传(一个特征)
培育具有特定皮毛颜色的已知基因型的“纯”小鼠,并了解性状是如何通过显性和隐性基因传递的。老鼠可以在笼子里储存,以便将来繁殖,每一对老鼠繁殖一次,就会报告皮毛颜色的统计数据。庞尼特平方可以用来预测结果。5分钟预告
可编程的探测器
在这篇关于编码的介绍中,编写一个探测车来探索火星表面。首先使用瓦片创建简单的程序,包括向前或向后移动、转弯、跳跃、循环和拾取岩石样本。然后使用文本指令来优化代码。使用你的技能来编程漫游车完成火星上的六个具有挑战性的任务。5分钟预告
8.S.1A.6.3:根据观察和测量所作的预测,或
8.S.1A.6.4::以图形、表格或图表形式传达的数据。
大爆炸理论-哈勃定律
跟随埃德温·哈勃的脚步,去发现支持大爆炸理论的证据。首先,观察不同星系中的造父变星,确定它们的距离。然后,测量这些星系的红移,以确定它们的后退速度。创建一个速度与距离的散点图,并将其与不断膨胀的宇宙联系起来。5分钟预告
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
小鼠遗传(一个特征)
培育具有特定皮毛颜色的已知基因型的“纯”小鼠,并了解性状是如何通过显性和隐性基因传递的。老鼠可以在笼子里储存,以便将来繁殖,每一对老鼠繁殖一次,就会报告皮毛颜色的统计数据。庞尼特平方可以用来预测结果。5分钟预告
8. s.1a。7:利用来自观察、数据或信息文本的证据,构建和分析科学论点,以支持主张、解释或设计。
重力球场
想象一个巨大的投手站在地球上,准备投掷一个巨大的棒球。当球扔得越来越用力时会发生什么?用重力俯仰小装置找出答案。观察球以不同速度抛出时的运动轨迹。把球扔到不同的行星上,看看每个行星的重力是如何影响球的。5分钟预告
8. s.1a。8:获取和评估科学信息
8.S.1A.8.3::开发模型,
8.S.1A.8.4:评估假设、解释、主张或设计或
可编程的探测器
在这篇关于编码的介绍中,编写一个探测车来探索火星表面。首先使用瓦片创建简单的程序,包括向前或向后移动、转弯、跳跃、循环和拾取岩石样本。然后使用文本指令来优化代码。使用你的技能来编程漫游车完成火星上的六个具有挑战性的任务。5分钟预告
8.S.1A.8.5a:使用科学写作或口头报告的惯例和期望进行交流
8. s.1a.8.5a。2:报告学生实验调查的结果。
8. s。1B:技术是为了满足人类的欲望和需要而对自然界进行的任何修改。工程设计过程包括一系列用于解决问题的迭代步骤,并经常导致开发新的或改进的技术。
8. s.1b。1:利用科学知识构造设备或设计解决方案,以解决特定问题或需求:
8. s .1. b .1.3:为可能的设备或解决方案产生和交流想法,
8.S.1B.1.4::制造和测试设备或解决方案
可编程的探测器
在这篇关于编码的介绍中,编写一个探测车来探索火星表面。首先使用瓦片创建简单的程序,包括向前或向后移动、转弯、跳跃、循环和拾取岩石样本。然后使用文本指令来优化代码。使用你的技能来编程漫游车完成火星上的六个具有挑战性的任务。5分钟预告
8.S.1B.1.5:确定设备或解决方案是否解决了问题,并在需要时改进设计
可编程的探测器
在这篇关于编码的介绍中,编写一个探测车来探索火星表面。首先使用瓦片创建简单的程序,包括向前或向后移动、转弯、跳跃、循环和拾取岩石样本。然后使用文本指令来优化代码。使用你的技能来编程漫游车完成火星上的六个具有挑战性的任务。5分钟预告
8.S.1B.1.6::传达结果。
可编程的探测器
在这篇关于编码的介绍中,编写一个探测车来探索火星表面。首先使用瓦片创建简单的程序,包括向前或向后移动、转弯、跳跃、循环和拾取岩石样本。然后使用文本指令来优化代码。使用你的技能来编程漫游车完成火星上的六个具有挑战性的任务。5分钟预告
第2集:物理科学:力和运动
8.便士。第2题:学生将展示对一个物体的运动和稳定性的影响的理解。
8.便士。2A:当一个物体相对于参考点的位置发生变化时,就会发生运动。物体的最终位置是通过测量沿行程段的位置和方向的变化来确定的。虽然物体的速度在其运动的总时间内可能会变化,但平均速度是总距离除以总时间的结果。作用在物体上的力可以是平衡的,也可以是不平衡的。改变力或质量的大小会影响物体的运动。惯性是物体在运动中抗拒任何变化的倾向。
8. p.2a。1:计划并进行受控的科学调查,以测试改变物体的力或质量如何影响物体的运动(速度和方向)、形状或方向。
阿特伍德机
用滑轮上的无质量绳子连接两个物体,测量它们的高度和速度。观察整个模拟过程中作用在每个质量上的力。计算物体的加速度,并将这些计算与牛顿运动定律联系起来。每个物体的质量都可以控制,滑轮的质量和半径也可以控制。5分钟预告
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
风扇车物理学
通过在线性轨道上试验一辆推车(上面最多放三个风扇)来了解牛顿定律。手推车有质量,每个扇子也有质量。风扇在打开时产生恒定的力,并且可以随着测量推车的位置、速度和加速度而改变风扇的方向。5分钟预告
8. p.2a。2:开发和使用模型来比较和预测平衡力和不平衡力在大小和方向上对物体运动的最终影响。
阿特伍德机
用滑轮上的无质量绳子连接两个物体,测量它们的高度和速度。观察整个模拟过程中作用在每个质量上的力。计算物体的加速度,并将这些计算与牛顿运动定律联系起来。每个物体的质量都可以控制,滑轮的质量和半径也可以控制。5分钟预告
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
风扇车物理学
通过在线性轨道上试验一辆推车(上面最多放三个风扇)来了解牛顿定律。手推车有质量,每个扇子也有质量。风扇在打开时产生恒定的力,并且可以随着测量推车的位置、速度和加速度而改变风扇的方向。5分钟预告
8. p.2a。第3题:构造物体质量和惯性概念之间关系的解释(牛顿第一运动定律)。
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
8. p.2a。第4课:分析和解释数据,以支持对一个物体施加的每一个力都有一个在相反方向上施加的相等的力(牛顿第三运动定律)。
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
8. p.2a。5:分析和解释数据,以描述和预测力(包括重力和摩擦力)对物体速度和方向的影响。
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
自由落体实验
研究一个物体落到地面时的运动。各种各样的物体可以被比较,它们的运动可以在真空、正常空气和密度较大的空气中观察到。位置、速度和加速度随着时间的推移而测量,并且可以显示物体上的力。使用手动设置,可以调整物体的质量、半径、高度和初始速度,以及空气密度和风。5分钟预告
8. p.2a。6:使用数学和计算思维生成图形,表示物体的位置和速度的运动作为时间的函数。
褶皱区
设计一辆汽车,在碰撞中保护测试假人。调整弯曲区域的长度和刚度以及安全单元的刚度,以确定汽车在碰撞过程中会如何变形。增加安全带和/或安全气囊,以防止假人撞到方向盘。三种不同的车身类型(轿车、SUV和超小型)可供选择,并且可以使用不同的碰撞速度。5分钟预告
距离-时间图-度量
创建一个跑步者的位置与时间的图表,并根据你所做的图表观察跑步者完成40米冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
距离-时间和速度-时间图
创建一个跑步者的位置与时间的图表,并观察跑步者根据你所做的图表跑40码。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
距离-时间和速度-时间图-度量
创建一个跑步者的位置与时间的图表,并根据你所做的图表观察跑步者跑40米。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
风扇车物理学
通过在线性轨道上试验一辆推车(上面最多放三个风扇)来了解牛顿定律。手推车有质量,每个扇子也有质量。风扇在打开时产生恒定的力,并且可以随着测量推车的位置、速度和加速度而改变风扇的方向。5分钟预告
8. p.2a。7:在确定平均速度(vϝ/t)时,用数学和计算思维描述物体的速度和速度(包括正负方向的表达)之间的关系。
第3集:物理科学:波
8.便士。第3题:学生将展示对波的性质和行为的理解。
8.便士。3A:波(包括声波、地震波、水上波、光波)在与物质相互作用时具有能量并传递能量。波是一种重复的运动模式,它将能量从一个地方转移到另一个地方,而没有物质的整体位移。所有类型的波都有一些共同的特征。当波相互作用时,它们相互叠加或相互干扰,导致振幅的变化。主要的现代技术都是基于波及其与物质的相互作用。
8. p.3a。2:开发和使用模型来举例说明波的基本特性(包括频率、振幅、波长和速度)。
声音节拍和正弦波
听听看相似频率的声波产生的干扰模式。测试你辨别和匹配声音的能力,就像音乐家在给乐器调音一样。根据每个声音的频率计算你将听到的“声音节拍”的数量。[注意:本发明建议使用耳机。]5分钟预告
8. p.3a。3:分析和解释数据,以描述波与各种材料相互作用时的行为(包括折射,反射,透射和吸收)。
8. p.3a。4:分析和解释数据,以描述机械波相交时的行为。
8. p.3a。第5题:构建解释人类如何通过各种材料对光波的传输、吸收和反射来看到颜色。
8. p.3a。6 .获取和交流关于各种仪器如何通过发射和探测波(如无线电、电视、移动电话和无线计算机网络)来扩展人类感官的信息,以举例说明技术进步和设计如何满足人类需求。
第4集:地球科学:地球在宇宙中的位置
8. e。第4题:学生将展示对宇宙的理解和由地球在太阳系中的运动引起的可预测的模式。
8. e。4A:地球的太阳系是银河系的一部分,而银河系是宇宙中众多星系之一。地球只是浩瀚宇宙的一小部分,宇宙的发展经历了一段时间,开始于一段极端和快速的膨胀时期。
8. e.4a。第2题:利用来自恒星和气体的组成以及宇宙中星系的运动的证据,构建和分析科学论据,以支持宇宙开始于一个极端和快速膨胀的时期的主张。
8. e。4B:地球的太阳系由太阳和其他物体组成,这些物体由于太阳的引力而保持在绕太阳运行的轨道上。地球-月-日系统内的运动对地球的影响可以观测到。
8. e.4b。1:获取和交流信息,以模拟和比较太阳系中物体的特征和运动(包括行星、卫星、小行星、彗星和流星)。
8. e.4b。第2题:构造引力如何影响太阳系天体运动和地球潮汐的解释。
8. e.4b。第3题:开发和使用模型来解释季节是如何由地轴绕太阳运行时的倾斜引起的,它影响了一天的长度和地球表面的热量。
季节:地球、月亮和太阳
观察地球、月亮和太阳在三维空间中的运动,以解释日出和日落,并了解我们如何定义一天、一个月和一年。比较不同日期和地点的日出和日落时间。将阴影与太阳在天空中的位置联系起来,并将阴影与罗盘方向联系起来。5分钟预告
8. e.4b。4:开发和使用模型来解释太阳-地球-月球系统内的运动如何引起地球现象(包括日和年、月相、日食和月食以及潮汐)。
3 d Eclipse
观察地球、月亮和太阳的三维运动,以研究日食的原因和频率。在月食期间观察地球的阴影穿过月球,以及在日食期间月球的阴影穿过地球表面的路径。月球轨道的角度是可以调整的,月球到地球的距离也是可以调整的。5分钟预告
8. e.4b。5:获取和交流信息,以描述技术数据(包括望远镜、分光镜、卫星、空间探测器)如何提供关于太阳系和宇宙中物体的信息。
第5集:地球科学:地球系统和资源
8. e。第5题:学生将展示改变地球结构和为地球上的生命提供资源的过程的理解。
8. e。5A:地球上所有的过程都是地球系统内部和系统之间能量流动和物质循环的结果。由于地球的过程在本质上是动态的和相互作用的,地球表面是不断变化的。地球炽热的内部是驱动物质循环和移动的主要能量来源。板块构造是解释地球表面过去和现在地壳运动的统一理论。这一理论为理解地质历史提供了一个框架。
8. e.5a。1:开发和使用模型来解释风化、侵蚀和沉积过程如何改变环境中的表面特征。
冲蚀率
在模拟3D环境中探索侵蚀。观察景观如何随着时间的推移而演变,因为它是由流动的水的力量塑造的。改变初始景观、岩石类型、降水量、平均温度和植被,并测量每个变量如何影响侵蚀率和产生的景观特征。5分钟预告
8. e.5a。2:使用岩石旋回模型来描述形成火成岩、沉积岩和变质岩的过程和力之间的关系。
8. e.5a。第4题:构造解释如何解释板块构造理论
8.E.5A.4.1::岩石圈板块运动,
8.E.5A.4.2::板块边界的地质活动
8.E.5A.4.3:地貌区域在地质时期的变化。
8. e.5a。5:构造和分析科学论据,以支持板块构造的主张
8.E.5A.5.1:化石在不同大陆的分布,
8. e .5. a .5.2::地震的发生,和
8.E.5A.5.3:大陆和海底特征(包括山脉、火山、断层和海沟)。
建筑泛大陆
1915年,阿尔弗雷德·韦格纳提出,地球上所有的大陆曾经连接在一个古老的超大陆上,他称之为泛大陆。魏格纳关于大陆移动的观点导致了现代板块构造理论。把地球上的大陆像拼图一样拼在一起,创造出你自己版本的泛大陆。利用来自化石、岩石和冰川的证据来完善你的地图。5分钟预告
8. e。5B:自然过程可以引起地球系统的突然或逐渐的变化。有些可能会对人类产生不利影响,如火山爆发或地震。绘制一个地区自然灾害的历史,结合对相关地质力量的了解,可以帮助预测未来灾害的位置和可能性。
8. e.5b。1:分析和解释数据,以描述与构造板块边界,相互作用和热点有关的火山和地震的位置模式。
8. e.5b。2:构造地球内部力量如何导致地震和火山的解释。
第6集:地球科学:地球的历史和生命的多样性
8. e。6:学生将展示对地球地质历史及其随时间变化的生命多样性的理解。
8. e。6A:从岩层中解释的地质时间尺度提供了一种组织地球历史上主要历史事件的方法。岩层和化石记录记录了历史上许多生命形式的存在、多样性、灭绝和变化,对它们的分析只能提供相对的日期,而不能提供绝对的规模。生命形式的变化是由地球不同的地质条件决定的。
8. e.6a。4 .构建和分析科学论据,以支持不同类型的化石所提供的证据
8.E.6A.4.1:地球上存在的生命多样性,
8. e .6 . a .4.2:过去和现有生命形式之间的关系,以及
8. e。代代相传的自然选择的适应是物种为适应环境条件变化而发生变化的一个重要过程。。生物群落的资源可以在可持续的限度内得到利用,但如果生态系统变得不平衡,阻碍了资源的可持续利用,那么就可能发生生态系统退化和物种灭绝。
8. e.6b。1 .构建解释种群的生物适应和性状的遗传变异如何在特定环境中提高生存概率。
相关性最近修订:5/18/2021
关于STEM案例
学生们将扮演一名试图解决现实问题的科学家。他们使用科学实践来收集和分析数据,并在解决问题时形成和检验假设。
每个STEM案例都使用实时报告来展示学生的实时成绩。
热图介绍
根据案例的不同,学生完成案例需要30-90分钟。
学生进度自动保存,以便STEM案例可以在多个课程中完成。
每个STEM案例都有多个适合年级的版本或级别。
每个STEM案例级别都有一本相关的手册。这些互动指南侧重于案例背后的科学概念。