这种相关性列出了该州课程标准推荐的小发明。点击下面的任何Gizmo标题了解更多信息。
1:口译功能
1.1:理解函数的概念并使用函数表示法。
KY.HS.F。1:理解函数的属性和关键特性,以及函数可以被表示的不同方式。
KY.HS.F.1。答:理解从一个集合(称为定义域)到另一个集合(称为值域)的函数为定义域的每个元素指定值域中的一个元素。如果f是一个函数,x是它定义域的一个元素,那么f(x)表示f的输出对应于输入x。
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
使用映射图、有序对或关系图确定关系是否是函数。将箭头从域拖到范围,键入有序的对,或将点拖到图中,以便向关系添加输入和输出。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
KY.HS.F.1。b::使用适当的函数表示法,在其域中计算输入函数,并根据上下文解释使用函数表示法的语句。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
对于一个为两个量之间的关系建模的函数,用给出关系的口头描述的量和显示关键特征的草图来解释图和表的关键特征。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
将余弦函数图与单位圆上的夹角图作比较。沿着余弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
创建一个跑步者位置与时间的图表,并观察跑步者完成40码冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
创建一个跑步者的位置与时间的图表,并观察跑步者根据你所做的图表跑40码。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
将有理函数的方程与其图进行比较。分子和分母乘以或除以线性因子,并探索图形如何响应变化。5分钟预告
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
将有理函数的图与其方程作比较。改变方程的项,并探索图形是如何被平移和拉伸的。在数轴上检查定义域,并将其与方程的图形进行比较。5分钟预告
将正弦函数图与单位圆上的夹角图作比较。沿着正弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
将正切函数图与单位圆上的夹角图进行比较。沿着切线拖动一点,在单位圆上看到对应的角度。5分钟预告
KY.HS.F.1。d::将函数的定义域与其图联系起来,并在适用的情况下与它所描述的定量关系联系起来。
将有理函数的方程与其图进行比较。分子和分母乘以或除以线性因子,并探索图形如何响应变化。5分钟预告
使用映射图、有序对或关系图确定关系是否是函数。将箭头从域拖到范围,键入有序的对,或将点拖到图中,以便向关系添加输入和输出。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
改变对数函数方程中的值,并检查图形是如何转换或缩放的。将这些变换与函数的定义域,以及图中的渐近线联系起来。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
将有理函数的图与其方程作比较。改变方程的项,并探索图形是如何被平移和拉伸的。在数轴上检查定义域,并将其与方程的图形进行比较。5分钟预告
KY.HS.F.1。e:比较以不同方式表示的两个函数的性质(代数、图形、表格中的数字或口头描述)。
将有理函数的方程与其图进行比较。分子和分母乘以或除以线性因子,并探索图形如何响应变化。5分钟预告
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
KY.HS.F。2: : Recognize that arithmetic and geometric sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
1.2::根据上下文解释应用程序中出现的函数。
KY.HS.F。3:理解一个函数在一段时间内的平均变化率。
KY.HS.F.3。a:计算并解释一个函数(以符号形式或表格形式表示)在指定时间间隔内的平均变化率。
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
创建一个跑步者位置与时间的图表,并观察跑步者完成40码冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
创建一个跑步者的位置与时间的图表,并观察跑步者根据你所做的图表跑40码。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
探索一条直线的斜率,并学习如何计算斜率。通过移动直线上的点来调整直线,并观察其斜率的变化。5分钟预告
KY.HS.F.3。b:从图中估计变化率。
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
探索一条直线的斜率,并学习如何计算斜率。通过移动直线上的点来调整直线,并观察其斜率的变化。5分钟预告
1.3::分析使用不同表示的函数。
KY.HS.F。4:图形函数用符号表示,并显示图形的关键特征,使用或不使用技术(计算机,图形计算器)。
KY.HS.F.4。a:绘制线性和二次函数图,并显示截距,极大值和最小值。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
创建一个多项式作为线性因子的乘积。改变线性因子中的值,看看它们与函数根的关系。5分钟预告
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。5分钟预告
KY.HS.F.4。b:图平方根、立方根和绝对值函数。
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。5分钟预告
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
KY.HS.F.4.c::图多项式函数,在适当的因式分解可用时识别零,并显示终端行为。
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。5分钟预告
创建一个多项式作为线性因子的乘积。改变线性因子中的值,看看它们与函数根的关系。5分钟预告
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。5分钟预告
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。5分钟预告
KY.HS.F.4。d::图表指数和对数函数,显示拦截和结束行为。
将余弦函数图与单位圆上的夹角图作比较。沿着余弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
改变对数函数方程中的值,并检查图形是如何转换或缩放的。将这些变换与函数的定义域,以及图中的渐近线联系起来。5分钟预告
将正弦函数图与单位圆上的夹角图作比较。沿着正弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
将正切函数图与单位圆上的夹角图进行比较。沿着切线拖动一点,在单位圆上看到对应的角度。5分钟预告
用正弦或余弦函数的图形做实验。探索如何改变方程中的值可以平移或缩放函数的图形。5分钟预告
KY.HS.F.4。e::图形三角函数,显示周期、中线和振幅。
将余弦函数图与单位圆上的夹角图作比较。沿着余弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
改变对数函数方程中的值,并检查图形是如何转换或缩放的。将这些变换与函数的定义域,以及图中的渐近线联系起来。5分钟预告
将正弦函数图与单位圆上的夹角图作比较。沿着正弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
将正切函数图与单位圆上的夹角图进行比较。沿着切线拖动一点,在单位圆上看到对应的角度。5分钟预告
用正弦或余弦函数的图形做实验。探索如何改变方程中的值可以平移或缩放函数的图形。5分钟预告
KY.HS.F.4。f::分段函数图,包括阶跃函数。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
KY.HS.F.4。g::绘制有理函数图,在适当的因式分解可用时识别零点和渐近线,并显示终端行为。
将有理函数的方程与其图进行比较。分子和分母乘以或除以线性因子,并探索图形如何响应变化。5分钟预告
将有理函数的图与其方程作比较。改变方程的项,并探索图形是如何被平移和拉伸的。在数轴上检查定义域,并将其与方程的图形进行比较。5分钟预告
KY.HS.F。5:用不同但等价的形式编写由表达式定义的函数,以揭示和解释函数的不同属性。
KY.HS.F.5。a:在二次函数的上下文中识别零、极值和图的对称性。
用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。5分钟预告
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。5分钟预告
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。5分钟预告
KY.HS.F.5。b:利用指数的性质来解释指数函数的表达式,并将指数函数分为表示增长或衰减的两类。
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
2:建筑功能
2.1::建立一个函数来模拟两个量之间的关系。
KY.HS.F。6:写一个函数来描述两个量之间的关系。
KY.HS.F.6。a::从上下文确定显式表达式、递归过程或计算步骤。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
KY.HS.F.6。b::使用算术运算组合标准函数类型。
探索两个多项式的图以及它们的和或差的图。改变多项式中的系数,并研究图形如何响应变化。5分钟预告
KY.HS.F。7:使用算术和几何序列来模拟情况和场景。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
KY.HS.F.7。答::使用公式(显式和递归)生成等差和等比序列的项。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
KY.HS.F.7。b:编写公式来模拟等差数列和几何数列,并将这些公式应用于实际情况。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
在递归公式和显式公式之间转换。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
2.2::从现有函数构建新函数。
KY.HS.F。8:理解变换对函数图的影响。
KY.HS.F.8。a::识别用f(x) + k, kf(x), f(kx)和f(x + k)替换f(x)对特定k值(正负)的影响;求给定图的k的值。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
改变对数函数方程中的值,并检查图形是如何转换或缩放的。将这些变换与函数的定义域,以及图中的渐近线联系起来。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
将有理函数的图与其方程作比较。改变方程的项,并探索图形是如何被平移和拉伸的。在数轴上检查定义域,并将其与方程的图形进行比较。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
用正弦或余弦函数的图形做实验。探索如何改变方程中的值可以平移或缩放函数的图形。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。5分钟预告
KY.HS.F.8。b:用案例做实验,用技术说明对图的影响。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
改变对数函数方程中的值,并检查图形是如何转换或缩放的。将这些变换与函数的定义域,以及图中的渐近线联系起来。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
将有理函数的图与其方程作比较。改变方程的项,并探索图形是如何被平移和拉伸的。在数轴上检查定义域,并将其与方程的图形进行比较。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
用正弦或余弦函数的图形做实验。探索如何改变方程中的值可以平移或缩放函数的图形。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。5分钟预告
KY.HS.F。9:求逆函数。
KY.HS.F.9。答:给定一个可逆函数的方程,求其逆函数。
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
KY.HS.F.9.c::从图或表中读取逆函数的值,假设该函数具有逆函数。
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
KY.HS.F.9。d::通过限制定义域,由一个非可逆函数得到一个可逆函数。
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
KY.HS.F。10:理解指数和对数之间的反比关系,并利用这种关系,利用技术解决涉及对数和指数的问题。
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
3:线性,二次和指数函数
3.1:构建并比较线性、二次、指数模型并解决问题。
KY.HS.F。11:区分可以用线性函数和指数函数建模的情况。
KY.HS.F.11。答:认识并证明线性函数在等区间内以等差值增长,指数函数在等区间内以等因子增长。
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
调整变异常数,探索正变异函数或逆变异函数的曲线如何响应变化。比较直接变分函数和逆变分函数。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
KY.HS.F.11。b:认识到一个量相对于另一个量在单位间隔内以恒定速率变化的情况。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
调整变异常数,探索正变异函数或逆变异函数的曲线如何响应变化。比较直接变分函数和逆变分函数。5分钟预告
创建一个跑步者位置与时间的图表,并观察跑步者完成40码冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
创建一个跑步者的位置与时间的图表,并观察跑步者根据你所做的图表跑40码。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
KY.HS.F.11.c:识别一种情况,在这种情况下,一个数量相对于另一个数量在单位间隔内以恒定的百分比速率增长或衰减。
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
KY.HS.F。12:构造线性和指数函数,包括等差和几何序列,给定一个图,一个关系的描述,或两个输入-输出对(包括从表中读取这些)。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
KY.HS.F。用图表和表格观察到,一个指数增长的量最终超过了一个线性增长、二次增长或(更一般地)多项式函数增长的量。
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
3.2::根据函数建模的情况解释函数表达式。
KY.HS.F。14:根据上下文解释线性或指数函数中的参数。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
创建一个跑步者位置与时间的图表,并观察跑步者完成40码冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
创建一个跑步者的位置与时间的图表,并观察跑步者根据你所做的图表跑40码。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
4::三角函数
4.1:利用单位圆扩展三角函数的定义域。
KY.HS.F。15:理解一个角的弧度与其弧长之间的关系。
将余弦函数图与单位圆上的夹角图作比较。沿着余弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
将正弦函数图与单位圆上的夹角图作比较。沿着正弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
将正切函数图与单位圆上的夹角图进行比较。沿着切线拖动一点,在单位圆上看到对应的角度。5分钟预告
KY.HS.F。16:理解和使用单位圆。
KY.HS.F.16。答:解释一下坐标平面上的单位圆如何能将三角函数扩展到所有实数,解释为逆时针绕单位圆旋转的角度的弧度度量。
将余弦函数图与单位圆上的夹角图作比较。沿着余弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
将正弦函数图与单位圆上的夹角图作比较。沿着正弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
将正切函数图与单位圆上的夹角图进行比较。沿着切线拖动一点,在单位圆上看到对应的角度。5分钟预告
KY.HS.F.16。b::用特殊三角形从几何上确定pi/3、pi/4和pi/6的正弦、余弦、正切值,用单位圆表示pi - x、pi + x和2pi - x的正弦、余弦和正切值,其中x为任意实数。
将余弦函数图与单位圆上的夹角图作比较。沿着余弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
将正弦函数图与单位圆上的夹角图作比较。沿着正弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
选择正确的步骤来计算使用和和和差恒等式的三角表达式。使用逐步反馈来诊断不正确的步骤。5分钟预告
将正切函数图与单位圆上的夹角图进行比较。沿着切线拖动一点,在单位圆上看到对应的角度。5分钟预告
用正弦或余弦函数的图形做实验。探索如何改变方程中的值可以平移或缩放函数的图形。5分钟预告
KY.HS.F.16.c::用单位圆来解释三角函数的对称性(奇偶)和周期性。
将余弦函数图与单位圆上的夹角图作比较。沿着余弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
将正弦函数图与单位圆上的夹角图作比较。沿着正弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
将正切函数图与单位圆上的夹角图进行比较。沿着切线拖动一点,在单位圆上看到对应的角度。5分钟预告
用正弦或余弦函数的图形做实验。探索如何改变方程中的值可以平移或缩放函数的图形。5分钟预告
4.2::用三角函数模拟周期现象。
KY.HS.F。17:选择三角函数来模拟具有特定周期、中线和振幅的周期现象。
听听看相似频率的声波产生的干扰模式。测试你辨别和匹配声音的能力,就像音乐家在给乐器调音一样。根据每个声音的频率计算你将听到的“声音节拍”的数量。[注意:本发明建议使用耳机。]5分钟预告
通过观察潮汐高度和地球、月球和太阳的位置,了解地球上的高潮、低潮、大潮和小潮。潮汐可以从太空中观测到,水深也可以从海洋的码头上记录下来。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
用正弦或余弦函数的图形做实验。探索如何改变方程中的值可以平移或缩放函数的图形。5分钟预告
观察和测量用手移动弹簧模型上的横向、纵向和组合波。调整手的幅度和频率,以及弹簧的张力和密度。报告了波的速度和功率,并可以测量波长和振幅。5分钟预告
4.3:证明并应用三角恒等式。
KY.HS.F。20: : Proving identities and formulas within the context of trigonometry.
KY.HS.F.20。a:证明勾股定理,用它来求sin(theta), cos(theta),或给定sin(theta), cos(theta),或tan(theta)和角度的象限。
将余弦函数图与单位圆上的夹角图作比较。沿着余弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
选择正确的步骤来简化一个三角函数。使用逐步反馈来诊断不正确的步骤。5分钟预告
将正弦函数图与单位圆上的夹角图作比较。沿着正弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
重塑和调整一个直角三角形,并检查角a的正弦,角a的余弦和角a的正切是如何变化的。5分钟预告
将正切函数图与单位圆上的夹角图进行比较。沿着切线拖动一点,在单位圆上看到对应的角度。5分钟预告
KY.HS.F.20。b:证明正弦、余弦、正切的加减法公式,并用它们来解题。
选择正确的步骤来计算使用和和和差恒等式的三角表达式。使用逐步反馈来诊断不正确的步骤。5分钟预告