这种相关性列出了该州课程标准推荐的小发明。点击下面的任何Gizmo标题了解更多信息。
人工智能。数量和数量
1.1:无理数和有理数共同构成了实数系统,代表数轴上的所有点,而在实数之外还有一些数叫做复数。
AI.NQ。2: : Students will… Rewrite expressions involving radicals and rational exponents using the properties of exponents.
化简根式。使用逐步反馈来诊断任何不正确的步骤。5分钟预告
AI.NQ。学生将…定义虚数i使i²= -1。
确定复平面上一点的虚坐标和实坐标。在平面上拖动点,并研究坐标如何相应变化。5分钟预告
人工智能。代数与函数
AI.AF。1::代数
2.1.1::表达式可以用等价形式重写,通过使用代数性质,包括加法、乘法和幂的性质,使不同的特征或特征可见。
AI.AF.1.4:学生将根据上下文解释线性、二次和指数表达式,将它们的一个或多个部分视为单个实体。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
将代数表达式翻译成英语短语,并将英语短语翻译成代数表达式。阅读表达式或短语并选择单词瓦格或符号瓦格以形成相应的短语或短语。5分钟预告
AI.AF.1.5:学生将使用一个表达式的结构来确定重写它的方法。
选择正确的步骤来划分指数表达式。使用反馈来诊断不正确的步骤。5分钟预告
不爽餐厅正在招人!作为这家水下小酒馆的新厨师,你将学习操作代数表达式的基本知识。学习如何使用交换性和结合性属性生成等价表达式,如何处理讨厌的减法和除法,以及如何识别等价和非等价表达式。5分钟预告
在这篇等价代数表达式i的后续文章中,继续你在海底烹饪世界的迅速崛起,通过向前和反向使用分配律来制作等价表达式,根据等价对表达式进行排序,并亲自协助暴躁厨师自己进行一个将给他(也许还有你)带来名利的项目。5分钟预告
选择正确的步骤,使用指数和幂的规则来简化带有指数的表达式。使用反馈来诊断不正确的步骤。5分钟预告
选择正确的步骤来分解包含完全平方二项式、平方之差或常数因子的多项式。使用反馈来诊断不正确的步骤。5分钟预告
用面积模型分解先导系数大于1的多项式。使用逐步反馈来诊断任何错误。5分钟预告
用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。5分钟预告
选择正确的步骤来乘指数表达式。使用反馈来诊断不正确的步骤。5分钟预告
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
来见见蜘蛛侠,一个对代数表达式有兴趣的古怪生物!作为蜘蛛侠的养主,你有责任喂养它,让它长成蜘蛛侠的模样。但要小心,蜘蛛龙是一个挑食的人,他喜欢他的食物尽可能简单。利用交换律、分配律和加法和乘法的其他性质,把表达式写成最简单(也是最美味)的形式。5分钟预告
你会收养Spidro, Centeon,还是Ping Bee?它们是三种完全不同的生物,但有一个共同点:渴望简化代数表达式!了解如何使用分配律来组合可变术语,生成有助于您的宠物健康强壮成长的表达式。您将成为识别可以组合的术语的专家-甚至是带有指数和多个变量的术语。经过足够的练习,你和你的宠物将准备好竞争表情吃电路。好运!5分钟预告
选择正确的步骤来简化一个三角函数。使用逐步反馈来诊断不正确的步骤。5分钟预告
解方程难吗?如果你知道如何分离一个变量,你就成功了一半。另一半呢?不要做任何破坏等式平衡的事情。加入我们勇敢的变量朋友,当他遇到代数方程和一个(有时暴躁的)等号。稍加练习,你会发现解方程一点也不棘手。5分钟预告
将代数表达式翻译成英语短语,并将英语短语翻译成代数表达式。阅读表达式或短语并选择单词瓦格或符号瓦格以形成相应的短语或短语。5分钟预告
AI.AF.1.6:学生将选择并给出一个表达式的等效形式,以揭示和解释表达式所代表的量的性质。
AI.AF.1.6。a:对前导系数为1的二次表达式进行因式分解,并使用因式分解形式来显示它所定义的函数的零点。
用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。5分钟预告
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
AI.AF.1.6。b::使用二次表达式的顶点形式来显示其定义的函数的最大值或最小值及其对称轴;完成这个正方形以找到先导系数为1的二次方程的顶点形式。
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
AI.AF.1.6.c::使用指数的属性来转换指数函数的表达式。
选择正确的步骤来划分指数表达式。使用反馈来诊断不正确的步骤。5分钟预告
选择正确的步骤,使用指数和幂的规则来简化带有指数的表达式。使用反馈来诊断不正确的步骤。5分钟预告
选择正确的步骤来乘指数表达式。使用反馈来诊断不正确的步骤。5分钟预告
AI.AF.1.7::学生将…加法、减法和乘法多项式,表明多项式形成了一个类似于整数的系统,即多项式在加法、减法和乘法操作下是封闭的。
探索两个多项式的图以及它们的和或差的图。改变多项式中的系数,并研究图形如何响应变化。5分钟预告
使用面积模型添加多项式。使用逐步反馈来诊断任何错误。5分钟预告
用面积模型分解先导系数大于1的多项式。使用逐步反馈来诊断任何错误。5分钟预告
用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。5分钟预告
2.1.3:可以有目的地分析方程或不等式的结构(包括但不限于单变量线性方程和二次方程、不等式和双变量线性方程组)(使用和不使用技术),以确定有效的策略来找到解决方案(如果存在),然后证明解决方案。
AI.AF.1.9:学生将选择一个合适的方法来求解单变量二次方程。
AI.AF.1.9。答:使用平方补全法将x中的任意二次方程转化为(x - p)²= q形式的方程,且具有相同的解。解释一下如何从这个形式推导出二次公式。
利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。5分钟预告
AI.AF.1.9。b:通过检验(如x²= 49)解二次方程,取平方根,补全平方,二次公式,因式分解,视情况适用于方程的初始形式,认识到有些解可能不是实数。
选择正确的步骤来分解包含完全平方二项式、平方之差或常数因子的多项式。使用反馈来诊断不正确的步骤。5分钟预告
用面积模型分解先导系数大于1的多项式。使用逐步反馈来诊断任何错误。5分钟预告
用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。5分钟预告
确定复平面上一点的虚坐标和实坐标。在平面上拖动点,并研究坐标如何相应变化。5分钟预告
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。5分钟预告
AI.AF.1.10:学生将选择一种合适的方法来求解二元线性方程组。
AI.AF.1.10。答:用线性组合法求解两个变量的两个方程组;将使用线性组合更有效的情况与使用替换更有效的情况进行对比。
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
AI.AF.1.10。b:对比用代数方法和用图解和表格方法求得的两个变量的线性方程组的解。
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。5分钟预告
用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
(x,y)点是一个方程的解,或两个方程组的解。5分钟预告
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
2.1.4:表达式、方程和不等式可以用于分析和预测,无论是在数学中,还是在不同的环境中应用数学——特别是在与线性、二次和指数情况有关的环境中。
AI.AF.1.11:学生将在一个变量中创建方程和不等式,并使用它们来精确或近似地解决上下文中的问题。
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。5分钟预告
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
解决一个变量的不等式。检查数轴上的不等式,并确定哪些点是不等式的解。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
用平铺模型求解线性方程。使用反馈来诊断不正确的步骤。5分钟预告
用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。5分钟预告
利用二次不等式的图求其解集。改变不等号和不等号符号的术语。检查边界曲线和阴影区域如何响应变化。5分钟预告
利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。5分钟预告
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。5分钟预告
用数轴上的动态箭头解一个包含小数的方程。5分钟预告
解决一个变量的一步不等式。把解画在数轴上。5分钟预告
选择正确的步骤来解一个两步方程。使用反馈来诊断不正确的步骤。5分钟预告
把方程式翻译成英文句子,再把英文句子翻译成方程式。阅读方程式或句子,选择单词或符号方块组成相应的句子或方程式。5分钟预告
AI.AF.1.12::学生将创建两个或多个变量的方程,以表示上下文中数量之间的关系;用标尺和标尺在坐标轴上画出方程,并用它们来进行预测。
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。5分钟预告
把圆的图形与其方程作比较。改变方程中的项,并探索圆是如何相应地平移和缩放的。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
调整变异常数,探索正变异函数或逆变异函数的曲线如何响应变化。比较直接变分函数和逆变分函数。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
用数轴上的动态箭头解一个包含小数的方程。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
把方程式翻译成英文句子,再把英文句子翻译成方程式。阅读方程式或句子,选择单词或符号方块组成相应的句子或方程式。5分钟预告
AI.AF.1.13::学生将用方程和/或不等式表示约束,并求解方程组和/或不等式,在建模上下文中将解解释为可行或不可行的选项。
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。5分钟预告
利用可行域图求目标函数的最大值或最小值。改变目标函数的系数,改变约束条件。探索可行域的图是如何响应变化的。5分钟预告
将线性不等式系统与其图进行比较。改变系统中的系数和不等式符号,并探索边界线、阴影区域和阴影区域的交集如何响应变化。5分钟预告
AI.AF。2: : Connecting Algebra to Functions
2.2.1:函数将重点从两个变量(输入/输出)之间的逐点关系转移到考虑整个有序对集(其中每个第一个元素恰好与第二个元素配对)作为具有自己的特征和特征的实体。
AI.AF.2.14::学生将…给定一个由两个变量的方程定义的关系,将该关系的图确定为其在坐标平面上的所有解的集合。
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
AI.AF.2.15::学生将…定义一个函数为从一个集合(称为域)到另一个集合(称为范围)的映射,该映射为域的每个元素分配一个范围的元素。
AI.AF.2.15。答:使用函数表示法,对域内的输入函数求值,并根据上下文解释使用函数表示法的语句。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
AI.AF.2.15。b::将函数的定义域与其图联系起来,并在适用的情况下与它所描述的定量关系联系起来。
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。5分钟预告
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
将有理函数的方程与其图进行比较。分子和分母乘以或除以线性因子,并探索图形如何响应变化。5分钟预告
使用映射图、有序对或关系图确定关系是否是函数。将箭头从域拖到范围,键入有序的对,或将点拖到图中,以便向关系添加输入和输出。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
将有理函数的图与其方程作比较。改变方程的项,并探索图形是如何被平移和拉伸的。在数轴上检查定义域,并将其与方程的图形进行比较。5分钟预告
AI.AF.2.16:学生将比较和对比用方程式、图表或表格表示的关系和函数,以显示相关值;确定关系是否是函数。解释函数f是由方程y = f(x)定义的一种特殊关系。
使用映射图、有序对或关系图确定关系是否是函数。将箭头从域拖到范围,键入有序的对,或将点拖到图中,以便向关系添加输入和输出。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
AI.AF.2.17:学生将结合不同类型的标准函数在上下文中编写、求值和解释函数。
AI.AF.2.17。答::使用算术运算组合不同类型的标准函数来编写和求值函数。
探索两个多项式的图以及它们的和或差的图。改变多项式中的系数,并研究图形如何响应变化。5分钟预告
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
2.2.2:图可用于获得方程、不等式、方程组和不等式的精确或近似解——包括双变量线性方程组以及线性和二次方程组(通过技术给出或获得)。
AI.AF.2.18::学生将使用适当的技术,图形化地求解由两个变量的线性和/或二次方程组成的系统。
探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x,y)指向一个方程或方程组的解。5分钟预告
用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
(x,y)点是一个方程的解,或两个方程组的解。5分钟预告
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
AI.AF.2.19:学生将解释为什么方程y = f(x)和y = g(x)的图形相交点的x坐标是方程f(x) = g(x)的解。
AI.AF.2.19。答:使用数值表,或使用适当的技术,以图形方式找到方程的近似解。
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。5分钟预告
AI.AF.2.20:学生将……将两个变量的线性不等式的解画成半平面(在严格不等式的情况下不包括边界),并将两个变量的线性不等式系统的解集画成相应半平面的交集,在适当的情况下使用技术。
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。5分钟预告
AI.AF。3::函数
2.3.1::函数可以用多种表示形式来描述:映射图、函数符号(例如,f(x) = x²)、递归定义、表和图。
AI.AF.3.21:学生将……比较两个函数的性质,每个函数都以不同的方式表示(代数、图形、表格中的数字或口头描述)。
调整变异常数,探索正变异函数或逆变异函数的曲线如何响应变化。比较直接变分函数和逆变分函数。5分钟预告
将有理函数的方程与其图进行比较。分子和分母乘以或除以线性因子,并探索图形如何响应变化。5分钟预告
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
AI.AF.3.22::学生将…将序列定义为函数,包括递归定义,其域是整数的子集。
AI.AF.3.22。答:写出算术和几何序列的显式和递归公式,并将它们与线性和指数函数联系起来。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
2.3.2:属于同一族成员的函数具有该族中所有函数共有的区别属性(结构)。
AI.AF.3.23::学生将…识别用f(x) + k, k·f(x), f(k·x)和f(x + k)替换f(x)对特定k值(正负)的影响;求给定图的k的值。用案例进行实验,并使用适当的技术解释图表上的效果。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
改变对数函数方程中的值,并检查图形是如何转换或缩放的。将这些变换与函数的定义域,以及图中的渐近线联系起来。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
将有理函数的图与其方程作比较。改变方程的项,并探索图形是如何被平移和拉伸的。在数轴上检查定义域,并将其与方程的图形进行比较。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
用正弦或余弦函数的图形做实验。探索如何改变方程中的值可以平移或缩放函数的图形。5分钟预告
在平面上水平和垂直地翻译图形,并检查翻译的矩阵表示。5分钟预告
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。5分钟预告
AI.AF.3.24:学生将区分可以用线性函数建模的情况和可以用指数函数建模的情况。
AI.AF.3.24。答:证明线性函数在等间隔内以相等的差异增长,而指数函数在等间隔内以相等的因子增长。
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
AI.AF.3.24。b:定义线性函数来表示一个量相对于另一个量在单位间隔内以恒定速率变化的情况。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
AI.AF.3.24.c::定义指数函数来表示一个量相对于另一个量在单位间隔内以恒定的百分比速率增长或衰减的情况。
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
AI.AF.3.25:学生将…构造线性和指数函数,包括等比和几何序列,给定一个图,一个关系的描述,或两个输入-输出对(包括从表格中读取这些)。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
AI.AF.3.26:学生将用图表来表明一个指数增长的量最终会超过一个线性或二次增长的量。
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
AI.AF.3.27::学生将根据上下文解释函数的参数。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
2.3.3:函数可以用图形表示,图的关键特征,包括零点、截距,以及相关的变化率和最大值/最小值,可以与等效的符号表示相关联并用等效的符号表示来解释。
AI.AF.3.28:学生将…对于一个建立两个量之间关系模型的函数,用量来解释图和表的关键特征,并给出关系的口头描述来绘制显示关键特征的图形。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
创建一个跑步者位置与时间的图表,并观察跑步者完成40码冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
创建一个跑步者的位置与时间的图表,并观察跑步者根据你所做的图表跑40码。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
把一个数字丢进函数机,看看会得到什么数字!您可以使用六个预先设置的函数机之一,或将您自己的函数规则编程到其中一个空白机器中。最多可将三个功能机堆叠在一起。输入和输出可以记录在表格和图表上。5分钟预告
将有理函数的方程与其图进行比较。分子和分母乘以或除以线性因子,并探索图形如何响应变化。5分钟预告
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
将有理函数的图与其方程作比较。改变方程的项,并探索图形是如何被平移和拉伸的。在数轴上检查定义域,并将其与方程的图形进行比较。5分钟预告
AI.AF.3.29::学生将计算和解释一个函数(以符号形式或表格形式表示)在指定时间间隔内的平均变化率。从图表中估计变化率。
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
创建一个跑步者位置与时间的图表,并观察跑步者完成40码冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
创建一个跑步者的位置与时间的图表,并观察跑步者根据你所做的图表跑40码。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
探索一条直线的斜率,并学习如何计算斜率。通过移动直线上的点来调整直线,并观察其斜率的变化。5分钟预告
AI.AF.3.30:学生将用符号表达图形函数,并展示图形的关键特征,在简单的情况下手工表达,在更复杂的情况下使用技术。
AI.AF.3.30。a:绘制线性和二次函数图,并显示截距,极大值和最小值。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。5分钟预告
确定关系是否是映射图、有序对或图中的函数。使用图表来确定它是否是线性的。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
创建一个多项式作为线性因子的乘积。改变线性因子中的值,看看它们与函数根的关系。5分钟预告
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。5分钟预告
AI.AF.3.30。b::分段定义函数图,包括阶跃函数和绝对值函数。
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。5分钟预告
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
创建一个跑步者位置与时间的图表,并观察跑步者完成40码冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
创建一个跑步者的位置与时间的图表,并观察跑步者根据你所做的图表跑40码。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
AI.AF.3.30.c::指数函数图,显示拦截和结束行为。
将余弦函数图与单位圆上的夹角图作比较。沿着余弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
将对数函数方程与其图进行比较。改变对数函数的基数,并检查图形如何响应变化。使用电话线y=x比较相关的指数函数。5分钟预告
改变对数函数方程中的值,并检查图形是如何转换或缩放的。将这些变换与函数的定义域,以及图中的渐近线联系起来。5分钟预告
将正弦函数图与单位圆上的夹角图作比较。沿着正弦曲线拖动一点,在单位圆上看到对应的角度。5分钟预告
将正切函数图与单位圆上的夹角图进行比较。沿着切线拖动一点,在单位圆上看到对应的角度。5分钟预告
用正弦或余弦函数的图形做实验。探索如何改变方程中的值可以平移或缩放函数的图形。5分钟预告
2.3.4:函数模拟各种各样的真实情况,可以帮助学生理解做出和改变假设、分配变量和找到上下文问题的解决方案的过程。
AI.AF.3.31::学生将使用数学建模周期来解决涉及线性、二次、指数、绝对值和线性分段函数的现实问题。
用绝对值函数图解一个涉及绝对值的不等式。改变绝对值函数的项,改变与之比较的值。然后探索图和解集如何响应变化。5分钟预告
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
创建一个跑步者位置与时间的图表,并观察跑步者完成40码冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
创建一个跑步者的位置与时间的图表,并观察跑步者根据你所做的图表跑40码。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
人工智能。DSP:数据分析,统计和概率
AI.DSP。1:定量素养
3.1.1:关于数据的数学和统计推理可用于评估结论和评估风险。
AI.DSP.1.32::学生将对二元分类数据使用数学和统计推理,以得出结论和评估风险。
对一个大城市的居民进行民意调查,以确定他们对“是”或“否”问题的反应。估计全城投赞成票的实际比例。检查许多民意调查的结果,以帮助评估单个民意调查结果的可靠性。看看对于足够大的民意调查,正态曲线是如何逼近二项分布的。5分钟预告
在一个小社区对市民进行电话调查,以确定他们对“是”或“否”问题的反应。用结果来估计整个人群的情绪。调查这个估计的误差是如何随着被调查的人越来越多而变小的。比较随机抽样和非随机抽样。5分钟预告
3.1.2:做出和维护明智的,基于数据的决策是一个有定量知识的人的特征。
AI.DSP.1.33:学生将设计并实施一项调查,以确定两个分类变量之间是否存在关联,并根据调查结果撰写一篇有说服力的论点。
在一个小社区对市民进行电话调查,以确定他们对“是”或“否”问题的反应。用结果来估计整个人群的情绪。调查这个估计的误差是如何随着被调查的人越来越多而变小的。比较随机抽样和非随机抽样。5分钟预告
AI.DSP。4::概率
3.4.1:如果一个事件的发生不影响另一个事件发生的概率,则两个事件是独立的。确定两个事件是否独立可以用于发现和理解概率。
AI.DSP.4.38:学生将使用双向表格或树形图解释两个事件A和B是否独立。
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。5分钟预告
3.4.2:条件概率-即那些由一些已知信息“制约”的概率-可以从列联表中组织的数据计算出来。条件或假设可能影响概率的计算。
AI.DSP.4.39::学生将计算给定事件B的事件A的条件概率,使用双向表或树形图。
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。5分钟预告
AI.DSP.4.40:学生将在日常生活中认识和描述条件概率和独立性的概念,并使用日常语言解释它们。
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。5分钟预告
AI.DSP.4.41:学生将解释为什么A给定B的条件概率是B的结果中也属于A的部分,并在上下文中解释答案。
比较从袋子里抽出彩色弹珠的理论概率和实验概率。记录连续抽签结果,求实验概率。更换弹珠进行绘图以研究独立事件,或不更换弹珠以探索相关事件。5分钟预告