这种相关性列出了该州课程标准推荐的小发明。点击下面的任何Gizmo标题了解更多信息。
MA.912。NSO::数字感知和操作
MA.912.NSO.1.2::利用指数的性质生成等价的单项代数表达式。
选择正确的步骤来划分指数表达式。使用反馈来诊断不正确的步骤。5分钟预告
选择正确的步骤,使用指数和幂的规则来简化带有指数的表达式。使用反馈来诊断不正确的步骤。5分钟预告
选择正确的步骤来乘指数表达式。使用反馈来诊断不正确的步骤。5分钟预告
MA.912.NSO.1.4::应用之前对有理数加、减、乘、除数值根号运算的理解。
确定使用激进表达式完成操作的正确步骤。使用逐步反馈来诊断不正确的步骤。5分钟预告
化简根式。使用逐步反馈来诊断任何不正确的步骤。5分钟预告
MA.912。AR:代数推理
MA.912.AR.1.1::根据数学或现实世界的上下文识别和解释表示数量的表达式的部分,包括将其一个或多个部分视为单个实体。
利用等差数列图和直接计算,找出等差数列中个别项的值。改变共同的差异,并检查序列如何变化响应。5分钟预告
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
利用树形图、条形图和直接计算,找出二项实验中若干成功或失败的概率。5分钟预告
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
通过改变初始项和公共比值并检查图形来探索几何序列。使用显式和递归公式计算序列中的特定项。5分钟预告
从一个盒子中随机选择一些字母的排列和组合。使用动态树形图、动态排列列表和计数原理的动态计算来计数排列和组合。5分钟预告
MA.912.AR.1.2::重新排列方程或公式以分离出感兴趣的量。
选择正确的步骤来求解给定变量的公式。使用反馈来诊断不正确的步骤。5分钟预告
MA.912.AR.1.3::加、减、乘有理数系数多项式表达式。
探索两个多项式的图以及它们的和或差的图。改变多项式中的系数,并研究图形如何响应变化。5分钟预告
使用面积模型添加多项式。使用逐步反馈来诊断任何错误。5分钟预告
选择正确的步骤来分解包含完全平方二项式、平方之差或常数因子的多项式。使用反馈来诊断不正确的步骤。5分钟预告
用面积模型分解先导系数大于1的多项式。使用逐步反馈来诊断任何错误。5分钟预告
用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。5分钟预告
MA.912.AR.1.7::将多项式表达式重写为多项式的乘积。
选择正确的步骤来分解包含完全平方二项式、平方之差或常数因子的多项式。使用反馈来诊断不正确的步骤。5分钟预告
用面积模型分解先导系数大于1的多项式。使用逐步反馈来诊断任何错误。5分钟预告
用面积模型分解先导系数为1的多项式。使用逐步反馈来诊断任何错误。5分钟预告
MA.912.AR.2.1::给定现实环境,编写并求解单变量多步线性方程。
用杯-计数器模型求解一个两步方程。使用逐步反馈来诊断和纠正不正确的步骤。5分钟预告
通过画出每条边并找到直线的交点来解一个方程。改变方程中的系数,并探索图形如何响应变化。5分钟预告
用数轴上的动态箭头解一个包含小数的方程。5分钟预告
选择正确的步骤来解一个两步方程。使用反馈来诊断不正确的步骤。5分钟预告
MA.912.AR.2.2::在数学或现实环境中,编写一个线性双变量方程来表示图形、书面描述或值表中的数量之间的关系。
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
MA.912.AR.2.3::对平行于或垂直于给定直线并经过给定点的直线,写一个线性双变量方程。
探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x,y)指向一个方程或方程组的解。5分钟预告
用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
(x,y)点是一个方程的解,或两个方程组的解。5分钟预告
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
MA.912.AR.2.4::给出线性函数的表格、方程或书面描述,绘制该函数的图形,并确定和解释其主要特征。
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
MA.912.AR.2.5::解决用线性函数建模的数学和现实问题并绘制图形。根据上下文解释关键特性并确定域约束。
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x,y)指向一个方程或方程组的解。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
MA.912.AR.2.6::给定数学或现实环境,编写并求解单变量线性不等式,包括复合不等式。用代数或图形表示解。
探索两个不等式的图形,找到它们的并集或交点。确定不等式的端点和复合不等式的端点之间的关系。5分钟预告
解决一个变量的不等式。检查数轴上的不等式,并确定哪些点是不等式的解。5分钟预告
解决一个变量的一步不等式。把解画在数轴上。5分钟预告
MA.912.AR.2.7:在数学或现实环境中,编写双变量线性不等式来表示图形或书面描述中数量之间的关系。
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。5分钟预告
MA.912.AR.2.8::给定一个数学或现实环境,画出一个双变量线性不等式的解集。
利用线性不等式的图形求出双变量线性不等式的解集。改变不等式的术语和不等式符号。检查边界线和阴影区域如何相应地变化。5分钟预告
MA.912.AR.3.1::在给定的数学或现实环境下,编写并求解实数系统上的一元二次方程。
确定复平面上一点的虚坐标和实坐标。在平面上拖动点,并研究坐标如何相应变化。5分钟预告
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。5分钟预告
MA.912.AR.3.4::编写一个二次函数来表示数学或现实环境中图形、书面描述或值表中两个量之间的关系。
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
MA.912.AR.3.5::给定二次函数的x截距和图形上的另一个点,写出该函数的方程。
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
MA.912.AR.3.6::给定一个表示二次函数的表达式或方程,确定顶点和零点,并根据现实环境解释它们。
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。5分钟预告
MA.912.AR.3.7::给出二次函数的表格、方程或书面描述,绘制该函数的图形,并确定和解释其主要特征。
通过二次函数的图和方程来研究二次函数的因子。改变二次方程的根,并检查图形和方程如何相应地变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
利用二次曲线或二次公式求二次方程的根。在复平面上探索根的图形和对称点。在实平面上比较二次曲线的对称轴和图形。5分钟预告
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。5分钟预告
MA.912.AR.3.8::解决用二次函数建模的数学和现实问题并绘制图形。根据上下文解释关键特性并确定域约束。
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
MA.912.AR.5.3::给定数学或现实环境,将指数函数分类为表示增长或衰减。
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
MA.912.AR.5.4::在数学或现实环境中,编写一个指数函数来表示图形、书面描述或数值表中两个量之间的关系。
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
MA.912.AR.5.6::给定一个指数函数的表格、方程或书面描述,将该函数画图并确定其主要特征。
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
探索指数增长或衰减函数的图形。改变初始数量和增长或衰减的速度,并研究图形的变化。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
MA.912.AR.9.1::给定数学或现实环境,用代数或图形方法编写并求解二元线性方程组。
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x,y)指向一个方程或方程组的解。5分钟预告
用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
(x,y)点是一个方程的解,或两个方程组的解。5分钟预告
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
MA.912.AR.9.4::画一个二元线性不等式系统的解集。
将线性不等式系统与其图进行比较。改变系统中的系数和不等式符号,并探索边界线、阴影区域和阴影区域的交集如何响应变化。5分钟预告
MA.912.AR.9.5::给定现实环境,将约束表示为线性方程或不等式的系统。将问题的解决方案解释为可行或不可行的选项。
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
利用可行域图求目标函数的最大值或最小值。改变目标函数的系数,改变约束条件。探索可行域的图是如何响应变化的。5分钟预告
探索线性方程组,以及一个方程组可以有多少个解。用矩阵形式表示系统。看一下系数矩阵的行列式如何揭示一个方程组有多少个解。另外,使用一个可拖动的绿色点来查看它对于一个(x,y)指向一个方程或方程组的解。5分钟预告
用图形和代数方法求解斜率-截距形式给出的线性方程组。使用一个可拖动的绿色点来检查它对于
(x,y)点是一个方程的解,或两个方程组的解。5分钟预告
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
将线性不等式系统与其图进行比较。改变系统中的系数和不等式符号,并探索边界线、阴影区域和阴影区域的交集如何响应变化。5分钟预告
MA.912。F::函数
MA.912.F.1.1::给定定义函数的方程或图,对函数类型进行分类。给定一个输入输出表,确定可以表示它的函数类型。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。5分钟预告
探索指数函数的图形。改变函数的初始量和基数。研究图表的变化。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
将线性方程的标准形式与其图形进行比较。改变系数并探索图形如何响应变化。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
MA.912.F.1.2::给定一个用函数表示法表示的函数,求该函数在其域中的输入值。对于实际环境,解释输出。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
探索一个指数函数的图形。改变函数的系数和基数,研究函数图形的变化。5分钟预告
将线性函数的图形与其规则和值表进行比较。通过拖动直线上的两个点来更改函数。检查规则和表如何变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将基函数的图与其方程作比较。改变方程的项。探索图形是如何通过对方程的更改进行平移和拉伸的。5分钟预告
MA.912.F.1.3:计算和解释以图形、代数或表格形式表示的现实世界情况在特定时间间隔内的平均变化率。
尝试用两条线来代表猫捉老鼠的追逐。调整猫和老鼠的速度和老鼠的头开始,立即看到对图形和对追逐的影响。将真实世界的含义与斜率,y截距和直线交点联系起来。5分钟预告
创建一个跑步者位置与时间的图表,并观察跑步者完成40码冲刺。注意这条线的斜率和跑步者的速度之间的联系。如果直线的斜率为0,跑步者会怎么做?如果斜率是负的呢?添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。5分钟预告
创建一个跑步者的位置与时间的图表,并观察跑步者根据你所做的图表跑40码。注意这条线的斜率和跑步者的速度之间的联系。添加第二个runner(第二个图形),并将现实世界的含义连接到两个图形的交集。也可以做一个跑步者的速度与时间的关系图,以及距离与时间的关系图。5分钟预告
探索一条直线的斜率,并学习如何计算斜率。通过移动直线上的点来调整直线,并观察其斜率的变化。5分钟预告
MA.912.F.1.5::比较线性函数和非线性函数的主要特征,它们都以相同的方式表示,如代数、图形、表格或书面描述。
研究四阶多项式的图。改变方程的系数,并研究图形如何响应变化。探索诸如拦截、结束行为,甚至接近零的行为。5分钟预告
MA.912.F.1.7:确定一个线性、二次或指数函数是否最好地模拟给定的现实世界情况。
使用数列图和直接计算,找到等差数列或等比数列中各个项的值。改变共同的差异和共同的比率,并检查如何变化的序列响应。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
MA.912.F.2.1::识别给定函数用f(x) + k、kf(x)、f(kx)和f(x + k)替换f(x)后对图或表的影响。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。5分钟预告
MA.912.F.2.3::给定f(x)的图或表和f(x) + k, kf(x), f(kx)和f(x + k)的图或表,说明变换的类型并求出实数k的值。
比较线性函数的图,绝对值函数的图,以及它们的平移图。改变函数中的系数和常数,并研究图形如何响应变化。5分钟预告
比较线性方程的点斜形式与其图。改变系数并探索图形如何响应变化。5分钟预告
将二次曲线与多项式形式的方程进行比较。改变方程的系数,并探索图形如何响应变化。5分钟预告
将二次方程的图与顶点形式的方程进行比较。改变方程的项,并探索图形如何响应变化。5分钟预告
比较线性方程的斜截式与其图。改变系数并探索图形如何响应变化。5分钟预告
改变函数方程中的系数,并检查函数的图形是如何平移或缩放的。选择不同的函数进行转换和缩放,并确定它们的共同之处。5分钟预告
调整二次函数中的值,以顶点形式或多项式形式,以“消灭”尽可能多的数据点。5分钟预告
MA.912.F.3.1::在给定的数学或现实环境中,使用算术运算将两个仅限于线性和二次的函数组合在一起。在适当的时候,为新函数包含域限制。
探索两个多项式的图以及它们的和或差的图。改变多项式中的系数,并研究图形如何响应变化。5分钟预告
解标准形式的线性方程组。探索用代数方法(用代换法或消元法)和图形方法解决系统意味着什么。此外,使用一个可拖动的绿色点,看看它意味着什么(x,y值是一个方程或一个方程组的解。5分钟预告
MA.912。FL:金融知识
MA.912.FL.1.2:解决涉及单利、复利和连续复利的问题,包括确定货币的现值和未来价值。
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
MA.912.FL.1.4:解释复利与指数增长之间的关系以及连续复利与指数增长之间的关系。
深入探索复利,从每年复利到连续复利。此外,将END POINTS图(其中的点适合指数曲线)与ALL TIME图进行比较,后者具有更类似于阶梯的外观。5分钟预告
MA.912。DP:数据分析和概率
MA.912.DP.1.1::给定一组数据,根据它是数值数据还是分类数据,以及它是单变量还是双变量,选择适当的方法来表示该数据。
构造一个盒须图来匹配线状图,并构造一个线状图来匹配盒须图。操作线形图并检查盒须图如何变化。然后操作盒须图并检查线形图如何变化。5分钟预告
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。5分钟预告
通过图来研究数据集的平均值、中位数、模态和范围。操作数据并观察平均值、中位数、模式和范围如何变化(或者在某些情况下,如何保持不变)。5分钟预告
更改数据集中的值,并检查动态直方图如何响应变化。调整直方图的间隔大小,并查看直方图的形状如何受到影响。5分钟预告
对一个大城市的居民进行民意调查,以确定他们对“是”或“否”问题的反应。估计全城投赞成票的实际比例。检查许多民意调查的结果,以帮助评估单个民意调查结果的可靠性。看看对于足够大的民意调查,正态曲线是如何逼近二项分布的。5分钟预告
在一个小社区对市民进行电话调查,以确定他们对“是”或“否”问题的反应。用结果来估计整个人群的情绪。调查这个估计的误差是如何随着被调查的人越来越多而变小的。比较随机抽样和非随机抽样。5分钟预告
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。5分钟预告
构建一个数据集,并将数据集的折线图与茎叶图进行比较。5分钟预告
检查具有负相关或正相关的随机数据集的散点图。改变相关性并探索相关性如何反映在散点图和趋势线中。5分钟预告
MA.912.DP.1.2::解释以各种方式表示的数据分布。说明数据是数值的还是分类的,是单变量还是双变量,并解释显示中的不同成分和数量。
构造一个盒须图来匹配线状图,并构造一个线状图来匹配盒须图。操作线形图并检查盒须图如何变化。然后操作盒须图并检查线形图如何变化。5分钟预告
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。5分钟预告
通过图来研究数据集的平均值、中位数、模态和范围。操作数据并观察平均值、中位数、模式和范围如何变化(或者在某些情况下,如何保持不变)。5分钟预告
更改数据集中的值,并检查动态直方图如何响应变化。调整直方图的间隔大小,并查看直方图的形状如何受到影响。5分钟预告
对一个大城市的居民进行民意调查,以确定他们对“是”或“否”问题的反应。估计全城投赞成票的实际比例。检查许多民意调查的结果,以帮助评估单个民意调查结果的可靠性。看看对于足够大的民意调查,正态曲线是如何逼近二项分布的。5分钟预告
在一个小社区对市民进行电话调查,以确定他们对“是”或“否”问题的反应。用结果来估计整个人群的情绪。调查这个估计的误差是如何随着被调查的人越来越多而变小的。比较随机抽样和非随机抽样。5分钟预告
构建一个数据集,并将数据集的折线图与茎叶图进行比较。5分钟预告
检查具有负相关或正相关的随机数据集的散点图。改变相关性并探索相关性如何反映在散点图和趋势线中。5分钟预告
MA.912.DP.1.3:在数值数据和分类数据的上下文中解释相关性和因果关系之间的差异。
探索数据集的相关系数与其图之间的关系。拟合一条线到数据,并比较最小二乘拟合线。5分钟预告
MA.912.DP.1.4::利用抽样调查的数据估计人口总数、平均值或百分比;通过使用模拟来开发误差范围。
对一个大城市的居民进行民意调查,以确定他们对“是”或“否”问题的反应。估计全城投赞成票的实际比例。检查许多民意调查的结果,以帮助评估单个民意调查结果的可靠性。看看对于足够大的民意调查,正态曲线是如何逼近二项分布的。5分钟预告
在一个小社区对市民进行电话调查,以确定他们对“是”或“否”问题的反应。用结果来估计整个人群的情绪。调查这个估计的误差是如何随着被调查的人越来越多而变小的。比较随机抽样和非随机抽样。5分钟预告
比较从总体分布中抽取的样本分布。基于样本分布预测总体分布的特征,并检查一个小样本如何代表给定的总体。5分钟预告
MA.912.DP.2.3::拟合二元数值数据的线性函数,表明线性关联并解释模型的斜率和y截距。使用该模型根据数据的上下文来解决现实世界的问题。
用你自己的判断为散点图中的数据拟合一条线。然后比较最佳拟合的最小二乘线。5分钟预告
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。5分钟预告
检查具有负相关或正相关的随机数据集的散点图。改变相关性并探索相关性如何反映在散点图和趋势线中。5分钟预告
MA.912.DP.2.4::给定一个表示二元数值数据的散点图,通过绘制和分析残差来评估给定线性函数的拟合。
用你自己的判断为散点图中的数据拟合一条线。然后比较最佳拟合的最小二乘线。5分钟预告
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。5分钟预告
检查具有负相关或正相关的随机数据集的散点图。改变相关性并探索相关性如何反映在散点图和趋势线中。5分钟预告
MA.912.DP.2.5::给定一个带有拟合和残差线的散点图,确定相关性的强度和方向。在现实环境中解释力量和方向。
用你自己的判断为散点图中的数据拟合一条线。然后比较最佳拟合的最小二乘线。5分钟预告
检查与不同纬度的天气相关的散点图。Gizmo包括三个不同的数据集,一个是负相关的,一个是正相关的,还有一个是没有相关的。比较最小二乘最佳拟合直线。5分钟预告
检查具有负相关或正相关的随机数据集的散点图。改变相关性并探索相关性如何反映在散点图和趋势线中。5分钟预告