CH.PS1:物质及其相互作用
CH.PS1.1:使用周期表作为模型,根据原子最外层能级的电子模式来预测元素的相对性质。
元素构建器
用质子、中子和电子来制造元素。随着质子、中子和电子数量的变化,元素的名称和符号、Z、N和A数字、电子点图以及周期表中的基团和周期等信息就会显示出来。每种元素被分为金属、类金属或非金属,并给出了其在室温下的状态。5分钟预告
CH.PS1.2:根据原子最外层电子状态、元素周期表的趋势、化学性质模式的知识和化合物的形成,构造和修正对简单化学反应结果的解释。
离子键
模拟各种金属和非金属之间的离子键。选择一个金属原子和一个非金属原子,将电子从一个原子转移到另一个原子。观察获得和失去电子对电荷的影响,并重新排列原子以表示分子结构。额外的金属和非金属原子可以添加到屏幕上,由此产生的化学式可以显示出来。5分钟预告
CH.PS1.3:计划并进行一项调查,以比较物质在大体积水平上的结构,以推断粒子之间的电作用力强度。
熔点
每种物质都有独特的转变点,即一个相(固体、液体或气体)转变到另一个相的温度。使用一个真实的熔点仪器来测量不同物质的熔点,沸点和/或升华点,并观察这些相变在微观水平上的样子。基于这些过渡点,可以推断将这些物质结合在一起的力的相对强度。5分钟预告
CH.PS1.4::建立一个模型来说明化学反应系统能量的释放或吸收取决于总键能的变化。
感受热浪
你曾经用过手套加热器来保暖吗?用即时冷敷来治疗伤口怎么样?在感受热的小发明中,用各种溶解在水中的盐和不同的包材料制作你自己的冷热包。了解放热和吸热过程,以及当键断裂和新键形成时,能量是如何被吸收或释放的。5分钟预告
CH.PS1.5:应用科学原理和证据解释改变反应粒子的条件对反应发生速度的影响。
CH.PS1.6:细化化学系统的设计,具体说明条件的变化会导致平衡状态下产物量的变化。
平衡与浓度
观察可逆反应中反应物和生成物是如何相互作用的。每种物质的初始量都可以控制,同时也可以控制腔室的压力。随着时间的推移,每个反应物和生成物的量、浓度和分压可以被跟踪,因为反应朝着平衡的方向进行。5分钟预告
CH.PS1.7:使用数学表示来支持在化学反应中原子和质量是守恒的这一说法。
摩尔
理解摩尔的定义,通过在天平中加入原子或公式单位,直到质量(克)等于原子或公式单位的质量,来确定阿伏伽德罗常数。操作一个概念模型,以了解粒子的数量,摩尔数和质量是如何相关的。然后使用量纲分析来转换粒子、摩尔和质量。5分钟预告
CH.PS1.8:建立模型,说明原子核组成的变化和裂变、聚变和放射性衰变过程中释放的能量。
平均原子质量
元素周期表中列出的每个元素的原子质量实际上是该元素所有不同同位素的加权平均质量。在平均原子质量小装置中,使用质谱仪将一种元素分离成其同位素。然后,通过考虑每个同位素的质量和丰度来计算平均原子质量。5分钟预告
半衰期
研究放射性物质的衰变。半衰期和放射性原子的数量可以调整,并且可以观察到理论或随机衰变。可以使用动态图、条形图和表格直观地解释数据。确定两个样品同位素的半衰期以及随机生成半衰期的样品。5分钟预告
CH.PS2:运动稳定性:力和相互作用
CH.PS2.6:交流科学和技术信息,说明为什么所设计材料的分子水平结构决定了材料的功能。
CH.PS3::能量
CH.PS3.3:设计、建造和改进一种装置,在给定的限制条件下将一种形式的能量转换为另一种形式的能量。
感受热浪
你曾经用过手套加热器来保暖吗?用即时冷敷来治疗伤口怎么样?在感受热的小发明中,用各种溶解在水中的盐和不同的包材料制作你自己的冷热包。了解放热和吸热过程,以及当键断裂和新键形成时,能量是如何被吸收或释放的。5分钟预告
CH.PS3.4:计划并进行调查,以提供证据,证明封闭系统中组件之间的热能传递涉及能量分散和热量含量的变化,并导致系统中组件之间的能量分布更加均匀(热力学第二定律)。
量热法实验室
研究当不同物质与水混合时,如何使用量热法来找到相对比热值。修改初始质量和温度值以查看对系统的影响。这些物质的一种或任何一种组合都可以与水混合。动态图(温度与时间)显示了混合后各个物质的温度。5分钟预告
传导与对流
两个烧瓶盛着彩色的水,一个黄色,另一个蓝色。设置每个烧瓶的起始温度,选择一种连接烧瓶的材料,看看烧瓶加热或冷却的速度有多快。烧瓶可以连接一个空心管,让烧瓶中的水混合,或者一个固体块,传递热量,但防止混合。5分钟预告
CH.PS4:波及其在信息传输技术中的应用
CH.PS4.1:使用数学表示来支持在各种介质中传播的波的频率、波长和速度之间的关系。
CH.PS4.3:提出一个论点,说明科学证据如何支持电磁辐射既可以用波模型也可以用粒子模型来描述,并且在某些情况下一种模型比另一种更有用的解释。
相关性最近修订:2020年9月16日
关于STEM案例
学生们将扮演一名试图解决现实问题的科学家。他们使用科学实践来收集和分析数据,并在解决问题时形成和检验假设。
每个STEM案例都使用实时报告来展示学生的实时成绩。
热图介绍
根据案例的不同,学生完成案例需要30-90分钟。
学生进度自动保存,以便STEM案例可以在多个课程中完成。
每个STEM案例都有多个适合年级的版本或级别。
每个STEM案例级别都有一本相关的手册。这些互动指南侧重于案例背后的科学概念。