这种相关性列出了该州课程标准推荐的小发明。点击下面的任何Gizmo标题了解更多信息。
地球与空间科学
1.1:空间系统
ESS.S.ESS。1:建立一个基于证据的模型,以说明太阳的寿命和核聚变在太阳核心释放能量的作用,最终以辐射的形式到达地球,涉及:
ess . s.s .1.1::原子结构
探索核聚变和裂变反应的例子。遵循质子-质子链、CNO循环和铀-235裂变的步骤。写出每一步的平衡核方程,并比较每个过程产生的能量。5分钟预告
ess . s.s .1.3::能量转移
探索核聚变和裂变反应的例子。遵循质子-质子链、CNO循环和铀-235裂变的步骤。写出每一步的平衡核方程,并比较每个过程产生的能量。5分钟预告
ess . s.s .1.4::聚变vs裂变
探索核聚变和裂变反应的例子。遵循质子-质子链、CNO循环和铀-235裂变的步骤。写出每一步的平衡核方程,并比较每个过程产生的能量。5分钟预告
ESS.S.ESS。第2题:根据光谱的天文证据,遥远星系的运动和宇宙中物质的组成,构建大爆炸理论的解释。
ess . s.s .2.1:宇宙膨胀
跟随埃德温·哈勃的脚步,去发现支持大爆炸理论的证据。首先,观察不同星系中的造父变星,确定它们的距离。然后,测量这些星系的红移,以确定它们的后退速度。创建一个速度与距离的散点图,并将其与不断膨胀的宇宙联系起来。5分钟预告
ss . s.s .2.2::频率和波长
跟随埃德温·哈勃的脚步,去发现支持大爆炸理论的证据。首先,观察不同星系中的造父变星,确定它们的距离。然后,测量这些星系的红移,以确定它们的后退速度。创建一个速度与距离的散点图,并将其与不断膨胀的宇宙联系起来。5分钟预告
ess . s.s .2.3::宇宙起源理论
跟随埃德温·哈勃的脚步,去发现支持大爆炸理论的证据。首先,观察不同星系中的造父变星,确定它们的距离。然后,测量这些星系的红移,以确定它们的后退速度。创建一个速度与距离的散点图,并将其与不断膨胀的宇宙联系起来。5分钟预告
ess . s.s .2.4::蓝移/红移
跟随埃德温·哈勃的脚步,去发现支持大爆炸理论的证据。首先,观察不同星系中的造父变星,确定它们的距离。然后,测量这些星系的红移,以确定它们的后退速度。创建一个速度与距离的散点图,并将其与不断膨胀的宇宙联系起来。5分钟预告
分析各种恒星的光谱。确定每个光谱中所代表的元素,并使用这些信息来推断恒星的温度和分类。寻找不寻常的特征,如红移恒星、星云和带有大行星的恒星。5分钟预告
ess . s.s .2.5::哈勃常数
跟随埃德温·哈勃的脚步,去发现支持大爆炸理论的证据。首先,观察不同星系中的造父变星,确定它们的距离。然后,测量这些星系的红移,以确定它们的后退速度。创建一个速度与距离的散点图,并将其与不断膨胀的宇宙联系起来。5分钟预告
ess . s.s .2.9::光的性质。
跟随埃德温·哈勃的脚步,去发现支持大爆炸理论的证据。首先,观察不同星系中的造父变星,确定它们的距离。然后,测量这些星系的红移,以确定它们的后退速度。创建一个速度与距离的散点图,并将其与不断膨胀的宇宙联系起来。5分钟预告
分析各种恒星的光谱。确定每个光谱中所代表的元素,并使用这些信息来推断恒星的温度和分类。寻找不寻常的特征,如红移恒星、星云和带有大行星的恒星。5分钟预告
ESS.S.ESS。3:使用至少两种不同的格式(例如,口头,图形,文本,数学)来交流关于恒星在其生命周期中产生元素的方式的科学思想。
ess . s.s .3.1::人力资源图
从地球上可见的恒星集合可以根据它们的颜色、温度、光度、半径和质量进行排列和分类。这可以使用一维或二维图来完成,包括光度与温度的赫茨普林斯-罗素图。5分钟预告
ess . s.s .3.2::恒星生命周期
从地球上可见的恒星集合可以根据它们的颜色、温度、光度、半径和质量进行排列和分类。这可以使用一维或二维图来完成,包括光度与温度的赫茨普林斯-罗素图。5分钟预告
ess . s.s .3.5::聚变vs裂变
探索核聚变和裂变反应的例子。遵循质子-质子链、CNO循环和铀-235裂变的步骤。写出每一步的平衡核方程,并比较每个过程产生的能量。5分钟预告
ESS.S.ESS。4:使用数学或计算表示(建模)来预测太阳系中绕轨道运行的物体的运动。
ess . s.s s .4.2::开普勒定律建模
通过观察行星围绕恒星的轨道,了解开普勒行星运动的三大定律。行星的初始位置、速度和质量可以改变,恒星的质量也可以改变。可以显示轨道的焦点和中心,并与恒星的位置进行比较。在给定的时间内,行星扫过的面积可以测量,轨道半径和周期的数据可以用几种方法绘制出来。5分钟预告
调查太阳系,观察一年的长度和每个物体的轨道路径。八颗官方行星的位置被显示出来,还有一颗矮行星冥王星。了解开普勒定律以及行星是如何分类的。5分钟预告
ess . s.s .4.3::牛顿引力。
拖动两个物体,观察它们位置变化时它们之间的引力。每个物体的质量都可以调整,引力以矢量和数字的形式显示。5分钟预告
1.2:地球的历史
ESS.S.ESS。5:评估大陆和海洋地壳过去和现在运动的证据,以及板块构造理论,以解释地壳岩石的年龄。
ss . s.s .5.1::大陆漂移假说
ESS.S.ESS.5.1。A:化石证据
1915年,阿尔弗雷德·韦格纳提出,地球上所有的大陆曾经连接在一个古老的超大陆上,他称之为泛大陆。魏格纳关于大陆移动的观点导致了现代板块构造理论。把地球上的大陆像拼图一样拼在一起,创造出你自己版本的泛大陆。利用来自化石、岩石和冰川的证据来完善你的地图。5分钟预告
ss . ss .5.2::海底扩张
在不同的位置移动地壳,观察构造板块运动的影响,包括火山爆发。每一种主要板块边界类型的信息,以及它们在地球上的位置都被显示出来。5分钟预告
ess . s.s .5.4::俯冲
在不同的位置移动地壳,观察构造板块运动的影响,包括火山爆发。每一种主要板块边界类型的信息,以及它们在地球上的位置都被显示出来。5分钟预告
ss . s.s .5.6::大洋vs大陆地壳。
在不同的位置移动地壳,观察构造板块运动的影响,包括火山爆发。每一种主要板块边界类型的信息,以及它们在地球上的位置都被显示出来。5分钟预告
ESS.S.ESS。7:建立一个模型,说明地球内部和表面过程如何在不同的空间和时间尺度上运作,通过建设性和破坏性力量的过程形成大陆和海底特征。
ess . s.s .7.1::构造力
ESS.S.ESS.7.1。B:构造力
在不同的位置移动地壳,观察构造板块运动的影响,包括火山爆发。每一种主要板块边界类型的信息,以及它们在地球上的位置都被显示出来。5分钟预告
ESS.S.ESS.7.1。D:岩层
扮演一块岩石在岩石循环中移动的角色。选择一个起始位置,并在整个周期中遵循许多可能的路径。了解岩石是如何形成、风化、侵蚀和改造的,因为它们从地球表面移动到地壳深处的位置。5分钟预告
ess . s.s .7.2::破坏性力量
在模拟3D环境中探索侵蚀。观察景观如何随着时间的推移而演变,因为它是由流动的水的力量塑造的。改变初始景观、岩石类型、降水量、平均温度和植被,并测量每个变量如何影响侵蚀率和产生的景观特征。5分钟预告
探究河流侵蚀如何在短期和长期内影响景观。描述山间溪流和蜿蜒河流的特征,并使用浮桶估计水流速度。目睹山间溪流向下侵蚀,蜿蜒的河流从一边侵蚀到另一边所发生的变化。5分钟预告
风化作用是指地球表面的岩石通过物理或化学手段发生的破坏。学生将了解不同类型的机械和化学风化作用,然后使用模拟模拟不同气候条件下不同类型岩石的风化作用。5分钟预告
ESS.S.ESS.7.2。答:俯冲
在不同的位置移动地壳,观察构造板块运动的影响,包括火山爆发。每一种主要板块边界类型的信息,以及它们在地球上的位置都被显示出来。5分钟预告
ESS.S.ESS.7.2。D:风化
风化作用是指地球表面的岩石通过物理或化学手段发生的破坏。学生将了解不同类型的机械和化学风化作用,然后使用模拟模拟不同气候条件下不同类型岩石的风化作用。5分钟预告
1.3:地球系统
ESS.S.ESS。9:建立一个基于地球内部的地震和磁证据的模型,以描述热对流的物质循环和由此产生的板块构造。
ess . s.s .9.2::密度
两个烧瓶盛着彩色的水,一个黄色,另一个蓝色。设置每个烧瓶的起始温度,选择一种连接烧瓶的材料,看看烧瓶加热或冷却的速度有多快。烧瓶可以连接一个空心管,让烧瓶中的水混合,或者一个固体块,传递热量,但防止混合。5分钟预告
通过加热液体和观察产生的运动来探索对流的原因。热源(或热源)的位置和强度可以改变,也可以改变液体的粘度。用探针测量不同区域的温度和密度,观察液体中分子的运动。然后,探索地球地幔、海洋和大气中对流细胞的真实例子。5分钟预告
在不同的位置移动地壳,观察构造板块运动的影响,包括火山爆发。每一种主要板块边界类型的信息,以及它们在地球上的位置都被显示出来。5分钟预告
ess . s.s .9.3::传热
两个烧瓶盛着彩色的水,一个黄色,另一个蓝色。设置每个烧瓶的起始温度,选择一种连接烧瓶的材料,看看烧瓶加热或冷却的速度有多快。烧瓶可以连接一个空心管,让烧瓶中的水混合,或者一个固体块,传递热量,但防止混合。5分钟预告
通过加热液体和观察产生的运动来探索对流的原因。热源(或热源)的位置和强度可以改变,也可以改变液体的粘度。用探针测量不同区域的温度和密度,观察液体中分子的运动。然后,探索地球地幔、海洋和大气中对流细胞的真实例子。5分钟预告
ESS.S.ESS。10:计划和开展水的性质及其对地球材料和表面过程的影响的调查。
ess . s.s .10.1::水循环
控制一滴水在水循环中流动的路径。每个阶段都提出了许多备选方案。确定水如何从一个位置移动到另一个位置,并了解这些位置的水资源是如何分配的。5分钟预告
ess . s.s .10.2::机械和化学风化
风化作用是指地球表面的岩石通过物理或化学手段发生的破坏。学生将了解不同类型的机械和化学风化作用,然后使用模拟模拟不同气候条件下不同类型岩石的风化作用。5分钟预告
ess . s.s .10.3:化学反应
风化作用是指地球表面的岩石通过物理或化学手段发生的破坏。学生将了解不同类型的机械和化学风化作用,然后使用模拟模拟不同气候条件下不同类型岩石的风化作用。5分钟预告
ESS.S.ESS。11:建立一个定量模型来描述碳在水圈、大气、岩石圈和生物圈之间的循环。
ess . s.s .11.1::生物地球化学循环
跟随碳原子穿过大气、生物圈、水圈和地圈的路径。操纵一个简化模型,看看人类活动和其他因素如何影响今天和未来的大气碳含量。5分钟预告
ess . s.s .11.2::碳循环
跟随碳原子穿过大气、生物圈、水圈和地圈的路径。操纵一个简化模型,看看人类活动和其他因素如何影响今天和未来的大气碳含量。5分钟预告
ess . s.s .11.3::碳储层
跟随碳原子穿过大气、生物圈、水圈和地圈的路径。操纵一个简化模型,看看人类活动和其他因素如何影响今天和未来的大气碳含量。5分钟预告
1.4:天气和气候
ESS.S.ESS。13:用一个模型来描述进出地球系统的能量流的变化如何导致气候变化。
ess . s.s .13.1::气候变化
在这个模拟的陆地区域内,可以测量白天的上升温度和夜间的下降温度,以及进出系统的热流。在任何特定时间,大气中存在的温室气体水平都可以调整,从而可以研究其长期影响。5分钟预告
在这个模拟的陆地区域内,可以测量白天的上升温度和夜间的下降温度,以及进出系统的热流。大气中存在的温室气体的数量可以随着时间的推移而调整,并可以调查其长期影响。5分钟预告
ESS.S.ESS。14:分析地球科学数据和全球气候模型的结果,对当前全球或区域气候变化的速度及其对地球系统的相关未来影响做出基于证据的预测。
ess . s.s ess .14.6::表面温度
在这个模拟的陆地区域内,可以测量白天的上升温度和夜间的下降温度,以及进出系统的热流。在任何特定时间,大气中存在的温室气体水平都可以调整,从而可以研究其长期影响。5分钟预告
在这个模拟的陆地区域内,可以测量白天的上升温度和夜间的下降温度,以及进出系统的热流。大气中存在的温室气体的数量可以随着时间的推移而调整,并可以调查其长期影响。5分钟预告
1.5:人类的可持续性
ESS.S.ESS。17:创建一个计算模拟,以说明自然资源管理、人口可持续性和生物多样性之间的关系。
探索影响加勒比海珊瑚礁的非生物因素。在这个简化的珊瑚礁模型中,许多因素都可以被操纵,包括海洋温度和pH值、风暴严重程度,以及来自伐木、污水和农业的过量沉积物和营养物质的输入。点击“提前一年”查看珊瑚礁对这些变化的反应。5分钟预告
在珊瑚礁1 -非生物因素活动的后续活动中,调查捕鱼、疾病和入侵物种对加勒比海珊瑚礁模型的影响。许多变量都可以被操纵,包括捕鱼强度,黑带和白带疾病的存在,以及实际和潜在的入侵物种的存在。点击“前一年”查看这些生物变化的影响。5分钟预告
测量池塘一天内的温度和氧含量。然后去钓鱼,看看池塘里生活着什么类型的鱼。可以调查许多不同的池塘,以确定时间、温度和养殖场对氧气水平的影响。5分钟预告
了解环境中存在的四种主要污染类型,然后看看各种现实世界的例子,试着猜测每种情况所代表的污染类型。在世界不同的地方,每天都可以看到所有真实世界的情况。5分钟预告
农场里的婴儿患有蓝色婴儿综合症。作为EPA环境工程师,学生必须找到婴儿生病的原因。利用环境数据,学生们了解氮循环的重要性以及人为因素如何影响自然。视频预览
ss . s.s .17.2::废物管理
探索影响加勒比海珊瑚礁的非生物因素。在这个简化的珊瑚礁模型中,许多因素都可以被操纵,包括海洋温度和pH值、风暴严重程度,以及来自伐木、污水和农业的过量沉积物和营养物质的输入。点击“提前一年”查看珊瑚礁对这些变化的反应。5分钟预告
了解环境中存在的四种主要污染类型,然后看看各种现实世界的例子,试着猜测每种情况所代表的污染类型。在世界不同的地方,每天都可以看到所有真实世界的情况。5分钟预告
农场里的婴儿患有蓝色婴儿综合症。作为EPA环境工程师,学生必须找到婴儿生病的原因。利用环境数据,学生们了解氮循环的重要性以及人为因素如何影响自然。视频预览
ESS.S.ESS。评估或改进一种技术解决方案,以减少人类活动对自然系统的影响。
在这篇基因工程小发明的后续文章中,探索农民如何利用转基因玉米最大限度地提高产量,同时限制对生态系统的破坏。选择要种植的玉米类型和除草剂和杀虫剂的用量,然后测量玉米产量,监测野生动物种群和多样性。观察污染物对附近溪流生态系统的长期影响。5分钟预告
农场里的婴儿患有蓝色婴儿综合症。作为EPA环境工程师,学生必须找到婴儿生病的原因。利用环境数据,学生们了解氮循环的重要性以及人为因素如何影响自然。视频预览
ESS.S.ESS。19:用计算表示来说明地球系统之间的关系,以及这些关系是如何由于人类活动而被修改的。
跟随碳原子穿过大气、生物圈、水圈和地圈的路径。操纵一个简化模型,看看人类活动和其他因素如何影响今天和未来的大气碳含量。5分钟预告
探索影响加勒比海珊瑚礁的非生物因素。在这个简化的珊瑚礁模型中,许多因素都可以被操纵,包括海洋温度和pH值、风暴严重程度,以及来自伐木、污水和农业的过量沉积物和营养物质的输入。点击“提前一年”查看珊瑚礁对这些变化的反应。5分钟预告
北冰洋的贻贝养殖户已经报告了贻贝的问题。他们注意到贻贝的壳已经被侵蚀,变得易碎。学生扮演海洋化学家的角色,分析海洋碳化学和平衡的变化,以确定贻贝壳侵蚀的原因。视频预览
ESS.S.ESS.19.2::大气
跟随碳原子穿过大气、生物圈、水圈和地圈的路径。操纵一个简化模型,看看人类活动和其他因素如何影响今天和未来的大气碳含量。5分钟预告
ess . s.s .19.6::二氧化碳浓度与光合生物量之间的联系
跟随碳原子穿过大气、生物圈、水圈和地圈的路径。操纵一个简化模型,看看人类活动和其他因素如何影响今天和未来的大气碳含量。5分钟预告
ess . s.s .19.7::海洋酸化
跟随碳原子穿过大气、生物圈、水圈和地圈的路径。操纵一个简化模型,看看人类活动和其他因素如何影响今天和未来的大气碳含量。5分钟预告
探索影响加勒比海珊瑚礁的非生物因素。在这个简化的珊瑚礁模型中,许多因素都可以被操纵,包括海洋温度和pH值、风暴严重程度,以及来自伐木、污水和农业的过量沉积物和营养物质的输入。点击“提前一年”查看珊瑚礁对这些变化的反应。5分钟预告
北冰洋的贻贝养殖户已经报告了贻贝的问题。他们注意到贻贝的壳已经被侵蚀,变得易碎。学生扮演海洋化学家的角色,分析海洋碳化学和平衡的变化,以确定贻贝壳侵蚀的原因。视频预览
ess . s.s .19.8::海洋温度升高。
探索影响加勒比海珊瑚礁的非生物因素。在这个简化的珊瑚礁模型中,许多因素都可以被操纵,包括海洋温度和pH值、风暴严重程度,以及来自伐木、污水和农业的过量沉积物和营养物质的输入。点击“提前一年”查看珊瑚礁对这些变化的反应。5分钟预告
科学的工程、技术和应用
2.1:工程设计
ETAS.S.ESS。21:为现实世界中的复杂问题设计一个解决方案,把它分解成更小的、更易于管理的、可以通过工程解决的问题。关于:
etas . s.s .21.6::水质。
农场里的婴儿患有蓝色婴儿综合症。作为EPA环境工程师,学生必须找到婴儿生病的原因。利用环境数据,学生们了解氮循环的重要性以及人为因素如何影响自然。视频预览
ETAS.S.ESS。22:根据优先考虑的标准和权衡来评估一个复杂现实问题的解决方案,这些标准和权衡考虑了一系列限制因素,包括成本、安全、可靠性和美学,以及可能的社会、文化和环境影响,参考:
etas . s.s .22.6::水质。
农场里的婴儿患有蓝色婴儿综合症。作为EPA环境工程师,学生必须找到婴儿生病的原因。利用环境数据,学生们了解氮循环的重要性以及人为因素如何影响自然。视频预览