这种相关性列出了该州课程标准推荐的小发明。点击下面的任何Gizmo标题了解更多信息。
NCES.Chm。第1集::物质:性质和变化
NCES.Chm.1.1::分析原子和离子的结构。
NCES.Chm.1.1.1::分析原子、同位素和离子的结构。
元素周期表中列出的每个元素的原子质量实际上是该元素所有不同同位素的加权平均质量。在平均原子质量小装置中,使用质谱仪将一种元素分离成其同位素。然后,通过考虑每个同位素的质量和丰度来计算平均原子质量。5分钟预告
用质子、中子和电子来制造元素。随着质子、中子和电子数量的变化,元素的名称和符号、Z、N和A数字、电子点图以及周期表中的基团和周期等信息就会显示出来。每种元素被分为金属、类金属或非金属,并给出了其在室温下的状态。5分钟预告
通过向原子核中加入质子和中子来探索什么是同位素。在中子与质子的图表上绘制稳定同位素和放射性同位素,并探索稳定同位素的中子:质子比如何从较轻的元素到较重的元素发生变化。5分钟预告
NCES.Chm.1.1.2::根据电子位置分析原子。
通过填充电子轨道来创造任意元素的电子排布。确定电子构型和原子半径之间的关系。发现原子半径的趋势在周期和向下家族/组的周期表。5分钟预告
用质子、中子和电子来制造元素。随着质子、中子和电子数量的变化,元素的名称和符号、Z、N和A数字、电子点图以及周期表中的基团和周期等信息就会显示出来。每种元素被分为金属、类金属或非金属,并给出了其在室温下的状态。5分钟预告
模拟各种金属和非金属之间的离子键。选择一个金属原子和一个非金属原子,将电子从一个原子转移到另一个原子。观察获得和失去电子对电荷的影响,并重新排列原子以表示分子结构。额外的金属和非金属原子可以添加到屏幕上,由此产生的化学式可以显示出来。5分钟预告
NCES.Chm.1.1.3:用玻尔模型解释波谱形式的电磁辐射发射。
通过氢气容器发射光子流。观察具有特定能量的光子是如何被吸收的,从而导致电子移动到不同的轨道上。根据被吸收和发射的光子构建氢的光谱。5分钟预告
发射光子来测定气体的光谱。观察一个被吸收的光子如何改变一个电子的轨道,以及一个被激发的电子如何发射光子。根据能级图计算吸收和发射光子的能量。激光产生的光能是可以调制的,用一盏灯就可以一次看到整个吸收光谱。5分钟预告
NCES.Chm.1.1.4:利用核方程和半衰期解释放射性衰变过程。
研究放射性物质的衰变。半衰期和放射性原子的数量可以调整,并且可以观察到理论或随机衰变。可以使用动态图、条形图和表格直观地解释数据。确定两个样品同位素的半衰期以及随机生成半衰期的样品。5分钟预告
通过向原子核中加入质子和中子来探索什么是同位素。在中子与质子的图表上绘制稳定同位素和放射性同位素,并探索稳定同位素的中子:质子比如何从较轻的元素到较重的元素发生变化。5分钟预告
观察核衰变的五种主要类型:α衰变、β衰变、γ衰变、正电子发射和电子捕获。通过确定子产物和发射粒子的质量数和原子序数来写出核方程。5分钟预告
NCES.Chm.1.2:从键的类型、强度和性质方面理解在简单化合物中发生的键。
NCES.Chm.1.2.1:(定性地)比较离子键、共价键和金属键的相对强度。
结合各种金属和非金属原子,观察电负性的差异如何决定化学键的极性。将分子置于电场中,通过实验来确定它们是极性的还是非极性的。创建极性和非极性分子的不同混合物,以探索它们之间产生的分子间力。5分钟预告
NCES.Chm.1.2.2::推断原子间形成的化学键和化学式的类型。
模拟各种金属和非金属之间的离子键。选择一个金属原子和一个非金属原子,将电子从一个原子转移到另一个原子。观察获得和失去电子对电荷的影响,并重新排列原子以表示分子结构。额外的金属和非金属原子可以添加到屏幕上,由此产生的化学式可以显示出来。5分钟预告
结合各种金属和非金属原子,观察电负性的差异如何决定化学键的极性。将分子置于电场中,通过实验来确定它们是极性的还是非极性的。创建极性和非极性分子的不同混合物,以探索它们之间产生的分子间力。5分钟预告
NCES.Chm.1.2.3::比较粒子间和粒子内力。
结合各种金属和非金属原子,观察电负性的差异如何决定化学键的极性。将分子置于电场中,通过实验来确定它们是极性的还是非极性的。创建极性和非极性分子的不同混合物,以探索它们之间产生的分子间力。5分钟预告
了解分子极性以及极性如何引起分子间作用力。测量液体的四种宏观性质(聚合力、附着力、表面张力和毛细上升)。比较不同液体的这些性质,并将它们与这些物质是极性的还是非极性的联系起来。5分钟预告
NCES.Chm.1.2.5:比较离子化合物、共价化合物、金属化合物和网络化合物的性质。
每种物质都有独特的转变点,即一个相(固体、液体或气体)转变到另一个相的温度。使用一个真实的熔点仪器来测量不同物质的熔点,沸点和/或升华点,并观察这些相变在微观水平上的样子。基于这些过渡点,可以推断将这些物质结合在一起的力的相对强度。5分钟预告
NCES.Chm.1.3::根据原子在元素周期表中的位置来理解它们的物理和化学性质。
NCES.Chm.1.3.1::对元素周期表的成分进行分类(周期、基团、金属、类金属、非金属、过渡)。
探索元素周期表中原子半径、电离能和电子亲和度的变化趋势。用尺子测量原子半径,通过探索去除电子的难易程度和原子吸引额外电子的强度来模拟电离能和电子亲和度。在整个周期表上查看这些性质,看看它们在不同周期和不同组之间是如何变化的。5分钟预告
NCES.Chm.1.3.2::根据元素在周期表上的位置推断元素的物理性质(原子半径、金属和非金属特征)。
探索元素周期表中原子半径、电离能和电子亲和度的变化趋势。用尺子测量原子半径,通过探索去除电子的难易程度和原子吸引额外电子的强度来模拟电离能和电子亲和度。在整个周期表上查看这些性质,看看它们在不同周期和不同组之间是如何变化的。5分钟预告
NCES.Chm.1.3.3::根据元素在周期表中的位置推断元素的原子大小、反应活性、电负性和电离能。
通过填充电子轨道来创造任意元素的电子排布。确定电子构型和原子半径之间的关系。发现原子半径的趋势在周期和向下家族/组的周期表。5分钟预告
探索元素周期表中原子半径、电离能和电子亲和度的变化趋势。用尺子测量原子半径,通过探索去除电子的难易程度和原子吸引额外电子的强度来模拟电离能和电子亲和度。在整个周期表上查看这些性质,看看它们在不同周期和不同组之间是如何变化的。5分钟预告
NCES.Chm。2:能量:守恒和转移
NCES.Chm.2.1:了解压力、温度、体积和相之间的关系。
NCES.Chm.2.1.1:解释相变的能量性质。
探索分子运动、温度和相变之间的关系。比较固体、液体和气体的分子结构。图中冰融化和水沸腾时温度的变化。求高度对相位变化的影响。启动温度、冰量、高度和加热或冷却速率都可以调节。5分钟预告
NCES.Chm.2.1.2:解释加热和冷却曲线(熔解热、汽化热、热、熔点和沸点)。
探索分子运动、温度和相变之间的关系。比较固体、液体和气体的分子结构。图中冰融化和水沸腾时温度的变化。求高度对相位变化的影响。启动温度、冰量、高度和加热或冷却速率都可以调节。5分钟预告
NCES.Chm.2.1.4::根据热损失等于热获得和比热的概念推断简单的量热计算。
研究当不同物质与水混合时,如何使用量热法来找到相对比热值。修改初始质量和温度值以查看对系统的影响。这些物质的一种或任何一种组合都可以与水混合。动态图(温度与时间)显示了混合后各个物质的温度。5分钟预告
NCES.Chm.2.1.5:从定性和定量两方面解释压力、温度、体积和气体量之间的关系。
通过进行温度恒定(波义耳定律)和压力保持固定(查尔斯定律)的实验来研究理想气体的性质。压力是通过在容器盖上放置质量来控制的,温度是通过可调的热源来控制的。吕萨克关于压力与温度的定律也可以通过保持体积恒定来探索。5分钟预告
当粒子通过一个可调节的间隙或隔板从房间的一侧反弹到另一侧时,探索它们的运动。粒子的质量可以调节,也可以调节房间的温度和粒子的初始数量。在现实环境中,这可以用来了解气味如何传播,流体如何通过缝隙,气体热力学和统计概率。5分钟预告
观察可逆反应中反应物和生成物是如何相互作用的。每种物质的量都可以控制,同时也可以控制腔室的压力。本课主要讲分压、道尔顿定律和勒夏特列原理。5分钟预告
探索在带有可移动活塞的腔室中理想气体的量、温度、压力和体积之间的关系。发现包含在波义耳定律、查尔斯定律、阿伏伽德罗定律和吕萨克定律中的比例法则。利用这些关系来推导理想气体定律,并计算理想气体常数的值。5分钟预告
NCES.Chm.2.2:分析化学反应的数量、产物形成和能量。
NCES.Chm.2.2.1::解释化学反应的能量含量。
放热化学反应释放能量,而吸热化学反应吸收能量。但是是什么导致一些反应是放热的,而另一些反应是吸热的呢?在这个模拟中,比较断裂键吸收的能量和形成键释放的能量,以确定反应是放热的还是吸热的。5分钟预告
NCES.Chm.2.2.2::分析化学变化的证据。
化学变化导致新物质的形成。但是你怎么知道是否发生了化学变化呢?通过观察和测量各种化学反应来探索这个问题。在此过程中,你将学习化学方程,酸和碱,放热和吸热反应,以及物质守恒。5分钟预告
NCES.Chm.2.2.3:分析物质守恒定律及其如何应用于各种类型的化学方程(合成、分解、单置换、双置换和燃烧)。
平衡和分类五种类型的化学反应:合成,分解,单一取代,双重取代,燃烧。在平衡反应时,每一侧的原子数以可视化、直方图和数值数据的形式呈现。5分钟预告
通过改变反应物和生成物的系数来练习平衡化学方程。随着公式的操作,每个元素的数量以单个原子、直方图或数字形式显示。反应物和生成物的摩尔质量也可以计算和平衡,以证明质量守恒。5分钟预告
NCES.Chm.2.2.4:分析化学反应中固有的化学计量关系。
用量纲分析解决化学问题。选择适当的磁贴,以便将问题中的单位转换为答案的单位。瓷砖可以翻转,一旦应用了适当的单位转换,就可以计算出答案。5分钟预告
在一个小镇上爆发了军团病。这种疾病是由军团菌引起的,军团菌在受污染的供水系统中大量繁殖。学生扮演环境化学家的角色,调查军团菌的来源,并使用化学计量学来净化供水,并补救疾病的爆发。视频预览
NCES.Chm。第3集:物质和能量的相互作用
NCES.Chm.3.1:了解影响反应速率和化学平衡的因素。
NCES.Chm.3.1.1:解释影响反应速率的因素(温度、浓度、颗粒大小和催化剂的存在)。
观察有和没有催化剂的化学反应。测定浓度、温度、表面积和催化剂对反应速率的影响。反应物和生成物浓度随时间的变化被记录下来,并且模拟的速度可以由用户调节。5分钟预告
解释系统处于平衡状态的条件。
观察可逆反应中反应物和生成物是如何相互作用的。每种物质的初始量都可以控制,同时也可以控制腔室的压力。随着时间的推移,每个反应物和生成物的量、浓度和分压可以被跟踪,因为反应朝着平衡的方向进行。5分钟预告
观察可逆反应中反应物和生成物是如何相互作用的。每种物质的量都可以控制,同时也可以控制腔室的压力。本课主要讲分压、道尔顿定律和勒夏特列原理。5分钟预告
北冰洋的贻贝养殖户已经报告了贻贝的问题。他们注意到贻贝的壳已经被侵蚀,变得易碎。学生扮演海洋化学家的角色,分析海洋碳化学和平衡的变化,以确定贻贝壳侵蚀的原因。视频预览
NCES.Chm.3.1.3::当应力施加到化学系统上时,推断平衡的位移(勒夏特列原理)。
观察可逆反应中反应物和生成物是如何相互作用的。每种物质的量都可以控制,同时也可以控制腔室的压力。本课主要讲分压、道尔顿定律和勒夏特列原理。5分钟预告
北冰洋的贻贝养殖户已经报告了贻贝的问题。他们注意到贻贝的壳已经被侵蚀,变得易碎。学生扮演海洋化学家的角色,分析海洋碳化学和平衡的变化,以确定贻贝壳侵蚀的原因。视频预览
NCES.Chm.3.2::了解解决方案和解决方案的过程。
NCES.Chm.3.2.1::使用水合氢离子和氢氧根离子浓度对物质进行分类。
测量中和未知浓度的酸或碱所需的已知溶液的量。利用这些信息来计算未知浓度。多种指标可以用来显示溶液的pH值。5分钟预告
NCES.Chm.3.2.2::概述酸和碱的性质。
用pH值纸测试常见物质的酸度。肥皂、柠檬汁、牛奶和烤箱清洁剂等材料都可以通过将pH值条的颜色与标准刻度进行比较来测试。5分钟预告
使用pH值纸(四种颜色指示剂)测试许多常见日常物质的酸度。包括肥皂、柠檬汁、牛奶和烤箱清洁剂在内的材料可以通过将pH值条的颜色与校准的刻度进行比较来测试。5分钟预告
NCES.Chm.3.2.3::推断溶液的定量性质(摩尔浓度、稀释度和摩尔比为1:1的滴定)。
测量中和未知浓度的酸或碱所需的已知溶液的量。利用这些信息来计算未知浓度。多种指标可以用来显示溶液的pH值。5分钟预告
NCES.Chm.3.2.4::总结解的性质。
确定溶剂的物理性质如何依赖于溶质粒子的数量。测量纯水和各种溶液的蒸汽压、沸点、冰点和渗透压。比较四种溶质(蔗糖、氯化钠、氯化钙和氯化钾)对这些物理性质的影响。5分钟预告
NCES.Chm.3.2.5:解释溶解度图。
在盛有水的烧杯中加入不同数量的化学物质,形成溶液,首先观察化学物质溶解在水中,然后在饱和点处测量溶液的浓度。可以在水中加入硝酸钾或氯化钠,也可以调节水的温度。5分钟预告